Skip to main content

Advertisement

Log in

Evaluating the effects of anticoagulant rodenticide bromadiolone in Wistar rats co-exposed to vitamin K: impact on blood–liver axis and brain oxidative status

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the beneficial effects of vitamin K relate to protection against detrimental effects of bromadiolone. Wistar rats (n = 30) were divided in three groups (n = 10): control group and two groups treated with bromadiolone (0.12 mg/kg) and bromadiolone + vitamin K (0.12 mg/kg + 100 mg/kg) over the period of four days. The main findings in the bromadiolone-exposed rats, such as damaged hepatocytes, high levels of globulin, total proteins and lymphocytes, and altered albumin/globulin ratio, collectively indicate an acute inflammatory process. Morphological changes in erythrocytes include microcytosis, hypochromia, hyperchromia, hemolysis, stomatocytosis, and spherocytosis. Significantly low values of RBC, Hct, and hemoglobin concentrations indicate impairments of the hematopoietic pathway causing combined anemia. The selected dose of bromadiolone caused a non-significant increase of catalase activity and a significant increase of the total protein content in brain tissue homogenates. Vitamin K supplementation reduced many of the harmful effects of bromadiolone. The cytoprotective role of vitamin K was proved to be of great importance for the preservation of structural changes on the membranes of hepatocytes and erythrocytes, in addition to the known role in the treatment of coagulopathies. The results of the study suggest valuable properties of vitamin K in the prevention and treatment of various types of anemia caused by bromadiolone toxicity. Future research is necessary to determine the adequate dose and treatment duration with vitamin K in disorders caused by the cumulative action of bromadiolone and possibly other pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Lefebvre S, Fourel I, Queffélec S, Vodovar D, Mégarbane B, Benoit E, Siguret V, Lattard V (2017) Poisoning by anticoagulant rodenticides in humans and animals: Causes and consequences. In: Malangu N (ed) Poisoning - from specific toxic agents to novel rapid and simplified techniques for analysis. IntechOpen. https: //doi.org/ https://doi.org/10.5772/intechopen.69955.

  2. Marangoni MN, Martynowycz MW, Kuzmenko I, Braun D, Polak PE, Weinberg G, Rubinstein I, Gidalevitz D, Feinstein DL (2016) Membrane cholesterol modulates superwarfarin toxicity. Biophys J 110:1777–1788. https://doi.org/10.1016/j.bpj.2016.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fisher P, Campbell KJ, Howald GR, Warburton B (2019) Anticoagulant rodenticides. Islands and animal welfare accountancy Animals (Basel) 9:919. https://doi.org/10.3390/ani9110919

    Article  Google Scholar 

  4. Radi ZA, Thompson LJ (2004) Renal subcapsular hematoma associated with brodifacoum toxicosis in a dog. Vet Hum Toxicol 46:83–84

    PubMed  Google Scholar 

  5. Lefebvre S, Benoit E, Lattard V (2016) Comparative biology of the resistance to vitamin K antagonists: An overview of the resistance mechanisms. In: Basaran O, Biteker M (ed) Anticoagulation therapy. https://doi.org/10.5772/64204

  6. Damin-Pernik M, Espana B, Lefebvre S, Fourel I, Caruel H, Benoit E, Lattard V (2017) Management of rodent populations by anticoagulant rodenticides: toward third-generation anticoagulant rodenticides. Drug Metab Dispos 45:160–165. https://doi.org/10.1124/dmd.116.073791

    Article  CAS  PubMed  Google Scholar 

  7. Vandenbroucke V, Bousquet-Melou A, De Backer P, Croubels S (2008) Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. J Vet Pharmacol Ther 31:437–445. https: //doi.org/ https://doi.org/10.1111/j.1365-2885.2008.00979.x

  8. Damin-Pernik M, Espana B, Besse S, Fourel I, Caruel H, Popowycz F, Benoit E, Lattard V (2016) Development of an ecofriendly anticoagulant rodenticide based on the stereochemistry of Difenacoum. Drug Metab Dispos 44:1872–1880. https://doi.org/10.1124/dmd.116.071688

    Article  CAS  PubMed  Google Scholar 

  9. Boettcher S, Wacker A, Moerike K, Kopp HG, Jaschonek K, Grobosch T, Kanz L, Salih HR (2011) Acquired coagulopathy caused by intoxication with the superwarfarin-type anticoagulant rodenticide flocoumafen. Eur J Haematol 86:173–175. https://doi.org/10.1111/j.1600-0609.2010.01550.x

    Article  CAS  PubMed  Google Scholar 

  10. Pitt WC, Higashi M, Primus TM (2011) The effect of cooking on diphacinone residues related to human consumption of feral pig tissues. Food Chem Toxicol 49:2030–2034. https://doi.org/10.1016/j.fct.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  11. Kammerer M, Pouliquen H, Pinault L, Loyau M (1998) Residues depletion in egg after warfarin ingestion by laying hens. Vet Hum Toxicol 40:273–275

    CAS  PubMed  Google Scholar 

  12. De Swiet M, Lewis PJ (1977) Excretion of anticoagulants in human milk. N Engl J Med 297:1471. https://doi.org/10.1056/nejm197712292972614

    Article  PubMed  Google Scholar 

  13. Serieys LEK, Armenta TC, Moriarty JG, Boydston EE, Lyren LM, Poppenga RH, Crooks KR, Wayne RK, Riley SP (2015) Anticoagulant rodenticides in urban bobcats: exposure, risk factors and potential effects based on a 16-year study. Ecotoxicol 24:844–862. https://doi.org/10.1007/s10646-015-1429-5

    Article  CAS  Google Scholar 

  14. Hughes J, Sharp E, Taylor MJ, Melton L, Hartley G (2013) Monitoring agricultural rodenticide use and secondary exposure of raptors in Scotland. Ecotoxicology 22:974–984. https://doi.org/10.1007/s10646-013-1074-9

    Article  CAS  PubMed  Google Scholar 

  15. Thomas PJ, Mineau P, Shore RF, Champoux L, Martin PA, Wilson LK, Fitzgerald G, Elliott JE (2011) Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environ Int 37: 914–920 Doi: https://doi.org/10.1016/j.envint.2011.03.010

  16. Christensen TK, Lassen P, Elmeros M (2012) High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch Environ Contam Toxicol 63:437–444. https://doi.org/10.1007/s00244-012-9771-6

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz-Suárez N, Henríquez-Hernández LA, Valerón PF, Boada LD, Zumbado M, Camacho M, Almeida-González M, Luzardo OP (2014) Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). Sci Total Environ 485:371–376. https://doi.org/10.1016/j.scitotenv.2014.03.094

    Article  CAS  PubMed  Google Scholar 

  18. United States Environmental Protection Agency. Pesticide Fact Sheet. Name of Chemical: Difenacoum reason for issuance: New rodenticide. Off. Prev. Pestic. Toxic Subst. 2007, 7501C. Available online: https: //www 3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-011901_01-Sep-07.pdf

  19. Revathi K, Yoganonda M (2006) Effect of bromadiolone on haematology, liver and kidney in Mus musculus. J Environ Biol 27:135–140

    CAS  PubMed  Google Scholar 

  20. Jeantet AY, Truchet M, Naulleau G, Martoja R (1991) Effects of bromadiolone on some organs and tissues (liver, kidney, spleen, blood) of coypu (Myocastor coypus). CR Acad Sci 312:149–156

    CAS  Google Scholar 

  21. World Health Organization & Food and Agriculture Organization of the United Nations (1996) WHO/FAO data sheet on pesticides. no.88, Bromadiolone. World Health Organization. https: //apps.who.int/iris/handle/10665/63287.

  22. Haffa A, Krueger D, Bruner J, Engelke J, Gundberg C, Akhter M, Binkley N (2000) Diet or warfarin-induced vitamin K insufficiency elevates circulating undercarboxylated osteocalcin without altering skeletal status in growing female rats. J Bone Miner Res 15:872–878. https://doi.org/10.1359/jbmr.2000.15.5.872

    Article  CAS  PubMed  Google Scholar 

  23. Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market. http: //data.europa.eu/eli/dir/1998/8/oj.

  24. Frankova M, Stejskal V, Aulicky R (2019) Efficacy of rodenticide baits with decreased concentrations of brodifacoum: validation of the impact of the new EU anticoagulant regulation. Sci Rep 9:16779. https://doi.org/10.1038/s41598-019-53299-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. AVMA Guidelines for the Euthanasia of Animals. 2020 ed. https: //www.avma.org/sites/default/files/2020-01/2020-Euthanasia-Final-1-17-20.pdf.

  26. UNESCO - Universal Declaration of Animal Rights 17–10–1978. http: //www.esdaw.eu/unesco.html.

  27. World Society for the Protection of Animals 2020. Universal Declaration on Animal Welfare. https: //europaregina.eu/business-ethics/animal-ethics/universal-declaration-on-animal-welfare/

  28. Suljević D, Sulejmanović J, Fočak M, Halilović E, Pupalović D, Hasić A, Alijagic A (2021) Assessing hexavalent chromium tissue-specific accumulation patterns and induced physiological responses to probe chromium toxicity in Coturnix japonica quail. Chemosphere 266:129005. https://doi.org/10.1016/j.chemosphere.2020.129005

    Article  CAS  PubMed  Google Scholar 

  29. Suljevic D, Corbic A, Islamagic E, Focak M, Filipic F, Alijagic A (2019) Impairments of bone marrow hematopoietic cells followed by the sever erythrocyte damage and necrotic liver as the outcome of chronic in vivo exposure to cadmium: novel insights from quails. Environ Toxicol Pharmacol 72:103250. https://doi.org/10.1016/j.etap.2019.103250

    Article  CAS  PubMed  Google Scholar 

  30. Suljevic D, Focak M, Filipic F, Hamzic N, Zubcevic N, Alijagic A (2018) Haematopoiesis in the European common toad Bufo bufo (Linnaeus, 1758): new methodological insights to study general, seasonal, and sexual haematopoietic distribution and maturation pattern. Turk J Zoo 42:198–206. https://doi.org/10.3906/zoo-1706-18

    Article  CAS  Google Scholar 

  31. Ibragić S, Fehratović E, Suljević D, Mitrašinović-Brulić M (2021) Artificial sweeteners elicit oxidative stress in rat brain and development of microcytic anemia: Promising protective effects of vitamin C. J Res Pharm 25:117–123 Doi: https://doi.org/10.29228/jrp.2

  32. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    Article  CAS  Google Scholar 

  33. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  34. Gül N, Yiğit N, Saygılı F, Demirel E, Geniş C (2016) Comparison of the effects of difenacoum and brodifacoum on the ultrastructure of rat liver cells. Arh Hig Rada Toksikol 67:204–209. https://doi.org/10.1515/aiht-2016-67-2783

    Article  CAS  PubMed  Google Scholar 

  35. El-Daly AA, Nassar SA (2014) Anticogulant Difenacoum-induced histological and ultrastructural alterations in liver of albino rats. Int J Adv Res 2:782–792

    Google Scholar 

  36. Binev RG, Valchev I, Groseva N, Lazarov L, Hristov T, Uzunova K (2012) Morphological investigations of experimental acute intoxication with the anticoagulant rodenticide bromadiolone in pheasants. İstanbul Üniv Vet Fak Derg 38:161–173

    Google Scholar 

  37. DuVall M, Murphy M, Ray A, Reagor J (1989) Case studies on second-generation anticoagulant rodenticide toxicities in nontarget species. J Vet Diagn Invest 1: 66–68 Doi: https://doi.org/10.1177/104063878900100118

  38. Bachmann KA, Sullivan TJ (1983) Dispositional andpharmacodynamic characteristics of brodifacoum in warfarin-sensitive rats. Pharmacol 27: 281–288. https://doi.org/10.1159/000137881

  39. Mosterd JJ, Thijssen HH (1991) The long-term effects of the rodenticide, brodifacoum, on blood coagulation and vitamin K metabolism in rats. Br J Pharmacol 104:531–535. https://doi.org/10.1111/j.1476-5381.1991.tb12463.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suttie JW (1987) Recent advances in hepatic vitamin K metabolism and function. Hepatology 7:367–376. https://doi.org/10.1002/hep.1840070226

    Article  CAS  PubMed  Google Scholar 

  41. Zuo W, Zhang X, Chang JB, Ma WB, Wei JJ (2019) Bromadiolone poisoning leading to subarachnoid haemorrhage: A case report and review of the literature. J Clin Pharm Ther 44:958–962. https://doi.org/10.1111/jcpt.13005

    Article  PubMed  Google Scholar 

  42. Lee HJ, You MR, Moon WR, Sul H, Chung CH, Park CY, Park SG (2014) Evaluation of risk factors in patients with vitamin K-dependent coagulopathy presumed to be caused by exposure to brodifacoum. Korean J Intern Med 29:498–508. https://doi.org/10.3904/kjim.2014.29.4.498.

  43. Wadelius M, Pirmohamed M (2007) Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J 7:99–111. https://doi.org/10.1038/sj.tpj.6500417.

  44. Eason CT, Murphy EC, Wright GR, Spurr EB (2002) Assessment of risks of brodifacoum to non-target birds and mammals in New Zealand. Ecotoxicology 11:35–48. https://doi.org/10.1023/a:1013793029831

    Article  PubMed  Google Scholar 

  45. Hattori SM, Makkai HPS, Becker K (1990) Feed value of some browse plants. Central Zone of Delta State, Nigeria 39:97–104

    Google Scholar 

  46. Kaneko JJ (1997) Serum proteins and the dysproteinemias. In: Kaneko JJ (ed) Clinical biochemistry of domestic animals. Academic press, San Diego (CA), pp 117–138

    Chapter  Google Scholar 

  47. Zaias J, Mineau M, Cray C, Yoon D, Altman NH (2009) Reference values for serum proteins of common laboratory rodent strains. J Am Assoc Lab Anim Sci 48:387–390

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Olfert ED, Godson DL (2000) Humane endpoints for infectious disease animal models. ILAR J 41:99–104. https://doi.org/10.1093/ilar.41.2.99

    Article  CAS  PubMed  Google Scholar 

  49. Card DJ, Francis S, Deuchande K, Harrington DJ (2014) Superwarfarin poisoning and its management. BMJ Case Rep Article ID bcr2014206360. https://doi.org/10.1136/bcr-2014-206360.

  50. Altay S, Cakmak HA, Boz GC, Koca S, Velibey Y (2012) Prolonged coagulopathy related to coumarin rodenticide in a young patient: superwarfarin poisoning. Cardiovasc J Afr 23:9–11. https://doi.org/10.5830/CVJA-2012-051

    Article  Google Scholar 

  51. Binev R, Petkov P, Rusenov A (2005) Intoxication with anticoagulant rodenticide bromadiolone in a dog - a case report. Vet Arhiv 75:273–282

    Google Scholar 

  52. Kalinin S, Marangoni N, Kowal K, Dey A, Lis K, Brodsky S, van Breemen R, Hauck Z, Ripper R, Rubinstein I, Weinberg G, Feinstein DL (2017) The long-lasting rodenticide brodifacoum induces neuropathology in adult male rats. Toxicol Sci 159:224–237. https://doi.org/10.1093/toxsci/kfx134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jang W, Kim J, Chae H, Kim M, Koh KN, Park CJ, Kim Y (2019) Hereditary spherocytosis caused by copy number variation in SPTB gene identified through targeted next-generation sequencing. Int J Hematol 10:250–254. https://doi.org/10.1007/s12185-019-02630-0

    Article  Google Scholar 

  54. Manciu S, Matei E, Trandafir B (2017) Hereditary spherocytosis - diagnosis, surgical treatment and outcomes. A literature review. Chirurgia (Bucur) 112:110–116. https://doi.org/10.21614/chirurgia.

  55. Sawhney A, Johal M (2000) Erythrocyte Alterations Induced by Malathion in Channa punctatus (Bloch). Bull Environ Contam Toxicol 64:398–405. https://doi.org/10.1007/s001280000014

    Article  CAS  PubMed  Google Scholar 

  56. Agrawal D, Gupta GSD, Shukla JS, Dutta KK, Ray PK (1990) Effect of methyl isocyanate (MIC) on rat erythrocytes. Arch Toxicol 64:332–335. https://doi.org/10.1007/BF01972995

    Article  CAS  PubMed  Google Scholar 

  57. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  58. Mansour SA, Mossa AH (2009) Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pestic Biochem Physiol 93:34–39. https://doi.org/10.1016/j.pestbp.2008.09.004

    Article  CAS  Google Scholar 

  59. Abdel-Daim MM, Samak DH, El-Sayed YS, Aleya L, Alarifi S, Alkahtani S (2019) Curcumin and quercetin synergistically attenuate subacute diazinon-induced inflammation and oxidative neurohepatic damage, and acetylcholinesterase inhibition in albino rats. Environ Sci Pollut Res Int 26:3659–3665. https://doi.org/10.1007/s11356-018-3907-9

    Article  CAS  Google Scholar 

  60. Sodhi S, Brar RS, Banga HS (2017) Bromadiolone induced oxidative stress and cytological damage in layer birds. Int J Adv Vet Sci Tech. 6:340–345. https://doi.org/10.23953/cloud.ijavst.272.

  61. Akbel E, Arslan-Acaroz D, Demirel HH, Kucukkurt I, Ince S (2018) The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicol Res (Camb) 7:503–512. https://doi.org/10.1039/c8tx00030a

    Article  CAS  Google Scholar 

  62. Ghasemnejad-Berenji M, Nemati M, Pourheydar B, Gholizadeh S, Karimipour M, Mohebbi I, Jafari A (2021) Neurological effects of long-term exposure to low doses of pesticides mixtures in male rats: biochemical, histological, and neurobehavioral evaluations. Chemosphere 264:128464. https://doi.org/10.1016/j.chemosphere.2020.128464

    Article  CAS  PubMed  Google Scholar 

  63. Jafari M, Salehi M, Ahmadi S, Asgari A, Abasnezhad M, Hajigholamali M (2012) The role of oxidative stress in diazinon-induced tissues toxicity in Wistar and Norway rats. Toxicol Mech Methods 22:638–647. https://doi.org/10.3109/15376516.2012.716090

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Damir Suljević involved in conceptualization, methodology, validation, formal analysis, data curation, writing – original draft, and writing – review and editing. Saida Ibragić participated in formal analysis, methodology, data curation, writing – original draft, and writing – review and editing. Maja Mitrašinović-Brulić took part in methodology, validation, and formal analysis. Muhamed Fočak involved in methodology, validation, formal analysis, and writing – original draft editing.

Corresponding author

Correspondence to Damir Suljević.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed by the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suljević, D., Ibragić, S., Mitrašinović-Brulić, M. et al. Evaluating the effects of anticoagulant rodenticide bromadiolone in Wistar rats co-exposed to vitamin K: impact on blood–liver axis and brain oxidative status. Mol Cell Biochem 477, 525–536 (2022). https://doi.org/10.1007/s11010-021-04303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04303-1

Keywords

Navigation