Skip to main content
Log in

Ticagrelor alleviates high-carbohydrate intake induced altered electrical activity of ventricular cardiomyocytes by regulating sarcoplasmic reticulum–mitochondria miscommunication

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Metabolic syndrome (MetS) is associated with additional cardiovascular risk in mammalians while there are relationships between hyperglycemia-associated cardiovascular dysfunction and increased platelet P2Y12 receptor activation. Although P2Y12 receptor antagonist ticagrelor (Tica) plays roles in reduction of cardiovascular events, its beneficial mechanism remains poorly understood. Therefore, we aimed to clarify whether Tica can exert a direct protective effect in ventricular cardiomyocytes from high-carbohydrate diet-induced MetS rats, at least, through affecting sarcoplasmic reticulum (SR)–mitochondria (Mit) miscommunication. Tica treatment of MetS rats (150 mg/kg/day for 15 days) significantly reversed the altered parameters of action potentials by reversing sarcolemmal ionic currents carried by voltage-dependent Na+ and K+ channels, and Na+/Ca2+-exchanger in the cells, expressed P2Y12 receptors. The increased basal-cytosolic Ca2+ level and depressed SR Ca2+ load were also reversed in Tica-treated cells, at most, though recoveries in the phosphorylation levels of ryanodine receptors and phospholamban. Moreover, there were marked recoveries in Mit structure and function (including increases in both autophagosomes and fragmentations) together with recoveries in Mit proteins and the factors associated with Ca2+ transfer between SR–Mit. There were further significant recoveries in markers of both ER stress and oxidative stress. Taken into consideration the Tica-induced prevention of ER stress and mitochondrial dysfunction, our data provided an important document on the pleiotropic effects of Tica in the electrical activity of the cardiomyocytes from MetS rats. This protective effect seems through recoveries in SR–Mit miscommunication besides modulation of different sarcolemmal ion-channel activities, independent of P2Y12 receptor antagonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kahn R (2005) Buse J Ferrannini E y cols. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and European Association for the Study of Diabetes. Diabetes Care 28:2289–2304

    Article  PubMed  Google Scholar 

  2. Cornier M-A, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH (2008) The metabolic syndrome. Endocr Rev 29:777–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88:389–419

    Article  CAS  PubMed  Google Scholar 

  4. Durak A, Olgar Y, Tuncay E, Karaomerlioglu I, Kayki Mutlu G, Arioglu Inan E, Altan VM, Turan B (2017) Onset of decreased heart work is correlated with increased heart rate and shortened QT interval in high-carbohydrate fed overweight rats. Can J Physiol Pharmacol 95:1335–1342

    Article  CAS  PubMed  Google Scholar 

  5. Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E, Turan B (2018) A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol 17:1–17

    Article  CAS  Google Scholar 

  6. Olgar Y, Tuncay E, Billur D, Durak A, Ozdemir S, Turan B (2020) Ticagrelor reverses the mitochondrial dysfunction through preventing accumulated autophagosomes-dependent apoptosis and ER stress in insulin-resistant H9c2 myocytes. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-020-03731-9

    Article  PubMed  Google Scholar 

  7. Hollopeter G, Jantzen H-M, Vincent D, Li G, England L, Ramakrishnan V, Yang R-B, Nurden P, Nurden A, Julius D (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    Article  CAS  PubMed  Google Scholar 

  8. Simon J, Filippov AK, Göransson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA (2002) Characterization and channel coupling of the P2Y(12) nucleotide receptor of brain capillary endothelial cells. J Biol Chem 277:31390–31400. https://doi.org/10.1074/jbc.M110714200

    Article  CAS  PubMed  Google Scholar 

  9. Wihlborg A-K, Wang L, Braun OO, Eyjolfsson A, Gustafsson R, Gudbjartsson T, Erlinge D (2004) ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arterioscler Thromb Vasc Biol 24:1810–1815

    Article  CAS  PubMed  Google Scholar 

  10. Kawaguchi A, Sato M, Kimura M, Ichinohe T, Tazaki M, Shibukawa Y (2015) Expression and function of purinergic P2Y12 receptors in rat trigeminal ganglion neurons. Neurosci Res 98:17–27. https://doi.org/10.1016/j.neures.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  11. Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44:242–250. https://doi.org/10.1002/glia.10293

    Article  PubMed  Google Scholar 

  12. Gachet C (2012) P2Y(12) receptors in platelets and other hematopoietic and non-hematopoietic cells. Purinergic Signal 8:609–619. https://doi.org/10.1007/s11302-012-9303-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang H, Tang B, Xu CH, Ahmed A (2019) Ticagrelor versus prasugrel for the treatment of patients with Type 2 diabetes mellitus following percutaneous coronary intervention: a systematic review and meta-analysis. Diabetes Therapy 10:81–93

    Article  PubMed  Google Scholar 

  14. Åkerblom A, Wojdyla DM, Wallentin L, James SK, de Souza BF, Steg PG, Cannon CP, Katus HA, Himmelmann A, Storey RF (2019) Ticagrelor in patients with heart failure after acute coronary syndromes—Insights from the PLATelet inhibition and patient Outcomes (PLATO) trial. Am Heart J 213:57–65

    Article  PubMed  CAS  Google Scholar 

  15. Sweeny JM, Angiolillo DJ, Franchi F, Rollini F, Waksman R, Raveendran G, Dangas G, Khan ND, Carlson GF, Zhao Y (2017) Impact of diabetes mellitus on the pharmacodynamic effects of ticagrelor versus clopidogrel in troponin-negative acute coronary syndrome patients undergoing ad hoc percutaneous coronary intervention. Journal of the American Heart Association 6:e005650

    Article  PubMed  PubMed Central  Google Scholar 

  16. Franchi F, Rollini F, Aggarwal N, Hu J, Kureti M, Durairaj A, Duarte VE, Cho JR, Been L, Zenni MM (2016) Pharmacodynamic comparison of prasugrel versus ticagrelor in patients with type 2 diabetes mellitus and coronary artery disease: the OPTIMUS (Optimizing Antiplatelet Therapy in Diabetes Mellitus)-4 study. Circulation 134:780–792

    Article  CAS  PubMed  Google Scholar 

  17. Mansour A, Bachelot-Loza C, Nesseler N, Gaussem P, Gouin-Thibault I (2020) P2Y12 Inhibition beyond Thrombosis: Effects on Inflammation. Int J Mol Sci 21:1391

    Article  CAS  PubMed Central  Google Scholar 

  18. Nylander S, Schulz R (2016) Effects of P2Y12 receptor antagonists beyond platelet inhibition–comparison of ticagrelor with thienopyridines. Br J Pharmacol 173:1163–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schnorbus B, Daiber A, Jurk K, Warnke S, König J, Krahn U, Lackner K, Munzel T, Gori T (2014) Effects of clopidogrel, prasugrel and ticagrelor on endothelial function, inflammatory and oxidative stress parameters and platelet function in patients undergoing coronary artery stenting for an acute coronary syndrome. A randomised, prospective, controlled study. BMJ open. https://doi.org/10.1136/bmjopen-2014-005268

    Article  PubMed  PubMed Central  Google Scholar 

  20. Serebruany VL, Atar D (2010) The PLATO trial: do you believe in magic? Oxford University Press

    Google Scholar 

  21. Audia JP, Yang X-M, Crockett ES, Housley N, Haq EU, O’Donnell K, Cohen MV, Downey JM, Alvarez DF (2018) Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y 12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol 113:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tubbs E, Rieusset J (2017) Metabolic signaling functions of ER–mitochondria contact sites: role in metabolic diseases. J Mol Endocrinol 58:R87–R106

    Article  CAS  PubMed  Google Scholar 

  23. López-Crisosto C, Bravo-Sagua R, Rodriguez-Peña M, Mera C, Castro PF, Quest AF, Rothermel BA, Cifuentes M, Lavandero S (2015) ER-to-mitochondria miscommunication and metabolic diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1852:2096–2105

    Article  CAS  Google Scholar 

  24. Missiroli S, Danese A, Iannitti T, Patergnani S, Perrone M, Previati M, Giorgi C, Pinton P (2017) Endoplasmic reticulum-mitochondria Ca2+ crosstalk in the control of the tumor cell fate. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1864:858–864

    Article  CAS  Google Scholar 

  25. Pinton P, Giorgi C, Pandolfi P (2011) The role of PML in the control of apoptotic cell fate: a new key player at ER–mitochondria sites. Cell Death Differ 18:1450–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gale EA (2005) The myth of the metabolic syndrome. Springer

    Book  Google Scholar 

  27. Huang B, Qian Y, Xie S, Ye X, Chen H, Chen Z, Zhang L, Xu J, Hu H, Ma S (2020) Ticagrelor inhibits the NLRP3 inflammasome to protect against inflammatory disease independent of the P2Y 12 signaling pathway. Cellular & Molecular Immunology 18:1278–1289

    Article  CAS  Google Scholar 

  28. Penna C, Aragno M, Cento AS, Femminò S, Russo I, Bello FD, Chiazza F, Collotta D, Alves GF, Bertinaria M (2020) Ticagrelor Conditioning Effects Are Not Additive to Cardioprotection Induced by Direct NLRP3 Inflammasome Inhibition: Role of RISK, NLRP3, and Redox Cascades. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2020/9219825

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cheng L, Fu H, Wang X, Ye L, Lakhani I, Tse G, Zhang Z, Liu T, Li G (2020) Effects of ticagrelor pretreatment on electrophysiological properties of stellate ganglion neurons following myocardial infarction. Clin Exp Pharmacol Physiol 47:1932–1942

    Article  CAS  PubMed  Google Scholar 

  30. Sebastián D, Hernández-Alvarez MI, Segalés J, Sorianello E, Muñoz JP, Sala D, Waget A, Liesa M, Paz JC, Gopalacharyulu P (2012) Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci 109:5523–5528

    Article  PubMed  PubMed Central  Google Scholar 

  31. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015

    Article  CAS  PubMed  Google Scholar 

  32. Turan B, Desilets M, Acan LN, Hotomaroglu O, Vannier C, Vassort G (1996) Oxidative effects of selenite on rat ventricular contractility and Ca movements. Cardiovasc Res 32:351–361

    Article  CAS  PubMed  Google Scholar 

  33. Tuncay E, Olgar Y, Durak A, Degirmenci S, Bitirim CV, Turan B (2019) β3-adrenergic receptor activation plays an important role in the depressed myocardial contractility via both elevated levels of cellular free Zn2+ and reactive nitrogen species. J Cell Physiol 234:13370–13386

    Article  CAS  PubMed  Google Scholar 

  34. Durak A, Bitirim CV, Turan B (2020) Titin and CK2α are New Intracellular Targets in Acute Insulin Application-Associated Benefits on Electrophysiological Parameters of Left Ventricular Cardiomyocytes From Insulin-Resistant Metabolic Syndrome Rats. Cardiovascular drugs and therapy. https://doi.org/10.1007/s10557-020-06974-2

    Article  PubMed  Google Scholar 

  35. Ozdemir S, Ugur M, Gürdal H, Turan B (2005) Treatment with AT1 receptor blocker restores diabetes-induced alterations in intracellular Ca2+ transients and contractile function of rat myocardium. Arch Biochem Biophys 435:166–174

    Article  CAS  PubMed  Google Scholar 

  36. Bilginoglu A, Kandilci HB, Turan B (2013) Intracellular levels of Na+ and TTX-sensitive Na+ channel current in diabetic rat ventricular cardiomyocytes. Cardiovasc Toxicol 13:138–147

    Article  CAS  PubMed  Google Scholar 

  37. Lariccia V, Macrì ML, Matteucci A, Maiolino M, Amoroso S, Magi S (2019) Effects of ticagrelor on the sodium/calcium exchanger 1 (NCX1) in cardiac derived H9c2 cells. Eur J Pharmacol 850:158–166

    Article  CAS  PubMed  Google Scholar 

  38. Rossini M, Filadi R (2020) Sarcoplasmic Reticulum-Mitochondria Kissing in Cardiomyocytes: Ca2+, ATP, and Undisclosed Secrets. Frontiers in Cell and Developmental Biology 8:532

    Article  PubMed  PubMed Central  Google Scholar 

  39. Eisner DA, Caldwell JL, Kistamás K, Trafford AW (2017) Calcium and excitation-contraction coupling in the heart. Circ Res 121:181–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Andrienko TN, Picht E, Bers DM (2009) Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes. J Mol Cell Cardiol 46:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Okatan EN, Durak AT, Turan B (2016) Electrophysiological basis of metabolic-syndrome-induced cardiac dysfunction. Can J Physiol Pharmacol 94:1064–1073

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Han X, Li M, Han Y, Zhang Y, Zhao S, Li Y (2018) Ticagrelor protects against AngII-induced endothelial dysfunction by alleviating endoplasmic reticulum stress. Microvasc Res 119:98–104. https://doi.org/10.1016/j.mvr.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  43. Afzal M, Kren BT, Naveed AK, Trembley JH, Ahmed K (2020) Protein kinase CK2 impact on intracellular calcium homeostasis in prostate cancer. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-020-03752-4

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qaiser F, Trembley JH, Kren BT, Wu JJ, Naveed AK, Ahmed K (2014) Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function. J Cell Biochem 115:2103–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmidt O, Harbauer AB, Rao S, Eyrich B, Zahedi RP, Stojanovski D, Schönfisch B, Guiard B, Sickmann A, Pfanner N (2011) Regulation of mitochondrial protein import by cytosolic kinases. Cell 144:227–239

    Article  CAS  PubMed  Google Scholar 

  46. Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A, Więckowski MR (2017) Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int J Mol Sci 18:1576

    Article  PubMed Central  CAS  Google Scholar 

  47. Makrecka-Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Kaambre T, Han WH, de Goede P, O’Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wust RCI, Larsen TS (2019) Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf). https://doi.org/10.1111/apha.13430

    Article  Google Scholar 

  48. Halim H, Pinkaew D, Chunhacha P, Sinthujaroen P, Thiagarajan P, Fujise K (2019) Ticagrelor induces paraoxonase-1 (PON1) and better protects hypercholesterolemic mice against atherosclerosis compared to clopidogrel. PloS one 14:e0218934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang M, Shao S, Zhang Y, Liang X, Zhang K, Li G (2019) Beneficial Effects of Ticagrelor on Oxidized Low-Density Lipoprotein (ox-LDL)-Induced Apoptosis in Human Umbilical Vein Endothelial Cells. Med Sci Monit 25:9811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fauconnier J, Lanner JT, Zhang SJ, Tavi P, Bruton JD, Katz A, Westerblad H (2005) Insulin and inositol 1,4,5-trisphosphate trigger abnormal cytosolic Ca2+ transients and reveal mitochondrial Ca2+ handling defects in cardiomyocytes of ob/ob mice. Diabetes 54:2375–2381. https://doi.org/10.2337/diabetes.54.8.2375

    Article  CAS  PubMed  Google Scholar 

  51. Yaras N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B (2005) Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54:3082–3088

    Article  CAS  PubMed  Google Scholar 

  52. Tuncay E, Turan B (2016) Intracellular Zn(2+) Increase in Cardiomyocytes Induces both Electrical and Mechanical Dysfunction in Heart via Endogenous Generation of Reactive Nitrogen Species. Biol Trace Elem Res 169:294–302. https://doi.org/10.1007/s12011-015-0423-3

    Article  CAS  PubMed  Google Scholar 

  53. Sharmin E, Dewan JF, Ahsan SA, Hoque H, Ahmed SF, Sultan MAU, Bhuiyan HA, Bhadra S, Barua C (2016) Effect of Ticagrerol versus Clopidogrel on Oxidative Stress Bio-markers in Patients with Chronic Stable Angina after Percutaneous Coronary Intervention. Univ Heart J 12:26–30

    Article  Google Scholar 

  54. Navarese EP, Buffon A, Kozinski M, Obonska K, Rychter M, Kunadian V, Austin D, De Servi S, Sukiennik A, Kubica J (2013) A critical overview on ticagrelor in acute coronary syndromes. QJM 106:105–115

    Article  CAS  PubMed  Google Scholar 

  55. Tatarunas V, Kupstyte-Kristapone N, Zvikas V, Jakstas V, Zaliunas R, Lesauskaite V (2020) Factors associated with platelet reactivity during dual antiplatelet therapy in patients with diabetes after acute coronary syndrome. Sci Rep 10:3175. https://doi.org/10.1038/s41598-020-59663-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ait-Mokhtar O, Bonello L, Benamara S, Paganelli F (2012) High on Treatment Platelet Reactivity. Heart Lung Circ 21:12–21. https://doi.org/10.1016/j.hlc.2011.08.069

    Article  PubMed  Google Scholar 

  57. Bonello L, Laine M, Kipson N, Mancini J, Helal O, Fromonot J, Gariboldi V, Condo J, Thuny F, Frere C (2014) Ticagrelor increases adenosine plasma concentration in patients with an acute coronary syndrome. J Am Coll Cardiol 63:872–877

    Article  CAS  PubMed  Google Scholar 

  58. Jeong HS, Hong SJ, Cho S-A, Kim J-H, Cho JY, Lee SH, Joo HJ, Park JH, Yu CW, Lim D-S (2017) JACC 10:1646–1658

    PubMed  Google Scholar 

  59. Chang Y-C, Hee S-W, Hsieh M-L, Jeng Y-M, Chuang L-M (2015) The role of organelle stresses in diabetes mellitus and obesity: implication for treatment. Analytical cellular pathology. https://doi.org/10.1155/2015/972891

    Article  Google Scholar 

  60. Hasnain SZ, Prins JB, McGuckin MA (2016) Oxidative and endoplasmic reticulum stress in b-cell dysfunction in diabetes. J Mol Endocrinol 56:33–54

    Article  CAS  Google Scholar 

  61. Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A, Chauvin M-A, Ji-Cao J, Zoulim F, Bartosch B, Ovize M (2014) Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63:3279–3294

    Article  CAS  PubMed  Google Scholar 

  62. Valentina C, Matteucci M, Pasanisi EM, Papa A, Lucio B, Fritsche-Danielson R, Vincenzo L (2020) Ticagrelor Enhances Release of Anti-Hypoxic Cardiac Progenitor Cell-Derived Exosomes Through Increasing Cell Proliferation In Vitro. Scientific Reports (Nature Publisher Group). https://doi.org/10.1038/s41598-020-59225-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants (No. SBAG216S979) from The Scientific and Technological Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Contributions

B.T. designed and supervised the research and provided the final approval of the version to be published; S.O. supervised the research and contributed to the editing of the manuscript; Y.O., E.T., A.D, and S.D. contributed and performed the experiments and analyzed the data; D.B. performed all light and electron microscopic analysis. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Semir Ozdemir or Belma Turan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Informed consent

All experimental protocols were approved by the Institutional Animal Care and Use Committee of the Ankara University. All animals received human care under an institutionally approved experimental animal protocol with ethical license in Turkey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olgar, Y., Durak, A., Degirmenci, S. et al. Ticagrelor alleviates high-carbohydrate intake induced altered electrical activity of ventricular cardiomyocytes by regulating sarcoplasmic reticulum–mitochondria miscommunication. Mol Cell Biochem 476, 3827–3844 (2021). https://doi.org/10.1007/s11010-021-04205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04205-2

Keywords

Navigation