Skip to main content

Advertisement

Log in

Downregulation of miR-17 suppresses TGF-β1-mediated renal fibrosis through targeting Smad7

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MiR-17 is found upregulated in diabetic mice; however, its effect(s) on renal fibrosis of diabetic nephropathy remain(s) unknown. This study aimed to explore the mechanism underlying the downregulation of miR-17 in renal fibrosis of diabetic nephropathy (DN). Patients with diabetes mellitus (DM) and DN and normal healthy individual controls, mice (db/db, db/m), and human mesangial cells (HMCs) and human proximal tubule epithelial cells (HK-2) were used as research subjects in the study. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the expression of miR-17 in the serum samples, renal tissues and cells. Acid-Schiff (PAS) and Masson staining experiments were performed to detect glomerular mesangial matrix and collagen deposition. Levels of fibrosis-related proteins (E-Cadherin (E-cad), vimentin, fibronectin and collagen I) were measured by Western blot (WB). The target gene of miR-17 was predicted by TargetScan 7.2 and confirmed by dual-luciferase reporter analysis. The study found that miR-17 expression was elevated in the serums of DN patients as well as in the serums and kidney tissues of db/db mice. db/db mice showed a severe renal fibrosis condition. The levels of E-cad in db/db mice, HMC and HK-2 cells were increased by downregulating miR-17 expression, while expressions of vimentin, fibronectin and collagen I were reduced. Smad7 was predicted to be the target gene of miR-17, and its expression was promoted by downregulation of miR-17. Moreover, the reduced Smad7 expression could inhibit the expressions of fibrosis-related proteins, which, however, can be ameliorated by the downregulation of miR-17. In addition, downregulation of miR-17 could suppress renal fibrosis mediated by TGF-β1 through targeting Smad7, which might be a clinical therapeutic target for patients with DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alam U, Asghar O, Azmi S, Malik RA (2014) General aspects of diabetes mellitus. Handb Clin Neurol 126:211–222. https://doi.org/10.1016/b978-0-444-53480-4.00015-1

    Article  PubMed  Google Scholar 

  2. Persson F, Rossing P (2018) Diagnosis of diabetic kidney disease: state of the art and future perspective. Kidney Int Suppl. https://doi.org/10.1016/j.kisu.2017.10.003

    Article  Google Scholar 

  3. Caliskan Y, Torun ES, Tiryaki TO, Oruc A, Ozluk Y, Akgul SU, Temurhan S, Oztop N, Kilicaslan I, Sever MS (2017) Immunosuppressive treatment in C3 glomerulopathy: is it really effective? Am J Nephrol 46(2):96–107. https://doi.org/10.1159/000479012

    Article  CAS  PubMed  Google Scholar 

  4. Kook-Hwan O, Young-Hwan H, Jung-Hwa C, Mira K, Kyung Don J, Kwon Wook J, Ki KD, Yon SuK, Curie A, Kyu OY (2012) Outcome of early initiation of peritoneal dialysis in patients with end-stage renal failure. J Korean Med Sci 27(2):170–176

    Article  Google Scholar 

  5. Simonson B, Das S (2015) MicroRNA therapeutics: the next magic bullet? Mini Rev Med Chem 15(6):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henao-Mejia J, Williams A, Goff L, Staron M, Licona-Limón P, Kaech S, Nakayama M, Rinn J, Flavell R (2013) The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity 38(5):984–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Winkler MA, Dib C, Ljubimov AV, Saghizadeh M (2014) Targeting miR-146a to treat delayed wound healing in human diabetic organ-cultured corneas. PLoS ONE 9(12):e114692. https://doi.org/10.1371/journal.pone.0114692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang S, Wang S, Bian C, Yang Z, Zhou H, Zeng Y, Li H, Han Q, Zhao CR (2012) Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev 21(13):2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu CY, Yang CY, Rui ZL (2019) MicroRNA-125b-5p improves pancreatic beta-cell function through inhibiting JNK signaling pathway by targeting DACT1 in mice with type 2 diabetes mellitus. Life Sci. https://doi.org/10.1016/j.lfs.2019.01.031

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mcclelland AD, Hermanedelstein M, Komers R, Jha JC, Winbanks CE, Hagiwara S, Gregorevic P, Kantharidis P, Cooper ME (2015) miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci 129(12):1237–1249

    Article  CAS  Google Scholar 

  11. Hou X, Tian J, Geng J, Li X, Tang X, Zhang J, Bai X (2016) MicroRNA-27a promotes renal tubulointerstitial fibrosis via suppressing PPARγ pathway in diabetic nephropathy. Oncotarget 7(30):47760–47776

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jinyang W, Yanbin G, Mingfei M, Minzhou L, Dawei Z, Jinkui Y, Zhiyao Z, Xuan Z (2013) Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys 67(2):537–546

    Article  Google Scholar 

  13. Nandakumar P, Tin A, Grove ML, Ma J, Boerwinkle E, Coresh J, Chakravarti A (2017) MicroRNAs in the miR-17 and miR-15 families are downregulated in chronic kidney disease with hypertension. PLoS ONE 12(8):e0176734

    Article  PubMed  PubMed Central  Google Scholar 

  14. He F, Peng F, Xia X, Zhao C, Luo Q, Guan W, Li Z, Yu X, Huang F (2014) MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 57(8):1726–1736. https://doi.org/10.1007/s00125-014-3282-0

    Article  CAS  PubMed  Google Scholar 

  15. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath 3(3):71–85

    Google Scholar 

  16. Pugliese G (2014) Updating the natural history of diabetic nephropathy. Acta Diabetol 51(6):905–915

    Article  CAS  PubMed  Google Scholar 

  17. Xu J, Hu XF, Huang W, Shen PY, Zhang W, Ren H, Li X, Wang WM, Chen N, Pan XX (2017) The clinicopathological characteristics of diabetic nephropathy and non-diabetic renal diseases in diabetic patients. Zhonghua Nei Ke Za Zhi 56(12):924–929. https://doi.org/10.3760/cma.j.issn.0578-1426.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  18. Najafian B, Alpers CE, Fogo AB (2011) Pathology of human diabetic nephropathy. Contrib Nephrol 170:36–47. https://doi.org/10.1159/000324942

    Article  PubMed  Google Scholar 

  19. Kato M, Natarajan R (2015) MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci 1353:72–88. https://doi.org/10.1111/nyas.12758

    Article  PubMed  PubMed Central  Google Scholar 

  20. Baker MA, Davis SJ, Liu P, Pan X, Williams AM, Iczkowski KA, Gallagher ST, Bishop K, Regner KR, Liu Y, Liang M (2017) Tissue-specific microRNA expression patterns in four types of kidney disease. J Am Soc Nephrol 28(10):2985–2992. https://doi.org/10.1681/asn.2016121280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Y, Li H, Liu J, Han P, Li X, Bai H, Zhang C, Sun X, Teng Y, Zhang Y, Yuan X, Chu Y, Zhao B (2017) Variations in microRNA-25 expression influence the severity of diabetic kidney disease. J Am Soc Nephrol 28(12):3627–3638. https://doi.org/10.1681/asn.2015091017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaucsar T, Revesz C, Godo M, Krenacs T, Albert M, Szalay CI, Rosivall L, Benyo Z, Batkai S, Thum T, Szenasi G, Hamar P (2013) Activation of the miR-17 family and miR-21 during murine kidney ischemia-reperfusion injury. Nucleic Acid Ther 23(5):344–354. https://doi.org/10.1089/nat.2013.0438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patel V, Williams D, Hajarnis S, Hunter R, Pontoglio M, Somlo S, Igarashi P (2013) miR-17–92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci USA 110(26):10765–10770. https://doi.org/10.1073/pnas.1301693110

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ostergaard MV, Pinto V, Stevenson K, Worm J, Fink LN, Coward RJ (2017) DBA2J db/db mice are susceptible to early albuminuria and glomerulosclerosis that correlate with systemic insulin resistance. Am J Physiol Ren Physiol 312(2):F312–F321. https://doi.org/10.1152/ajprenal.00451.2016

    Article  CAS  Google Scholar 

  25. Yu F, Lu Z, Huang K, Wang X, Xu Z, Chen B, Dong P, Zheng J (2016) MicroRNA-17-5p-activated Wnt/β-catenin pathway contributes to the progression of liver fibrosis. Oncotarget 7(1):81–93

    Article  PubMed  Google Scholar 

  26. Dakhlallah D, Batte K, Wang Y, Cantemir-Stone CZ, Yan P, Nuovo G, Mikhail A, Hitchcock CL, Wright VP, Nana-Sinkam SP, Piper MG, Marsh CB (2013) Epigenetic regulation of miR-17–92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 187(4):397–405. https://doi.org/10.1164/rccm.201205-0888OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kriz W, Kaissling B, Le Hir M (2011) Epithelial–mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Investig 121(2):468–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang F, Yang Y, Xue L, Li B, Zhang Z (2017) 1α,25-Dihydroxyvitamin D3 attenuates TGF-β-induced pro-fibrotic effects in human lung epithelial cells through inhibition of epithelial–mesenchymal transition. Nutrients. https://doi.org/10.3390/nu9090980

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196. https://doi.org/10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng G, Zhang J, Zhao H, Wang H, Pang M, Qiao X, Lee SR, Hsu TT, Tan TK, Lyons JG, Zhao Y, Tian X, Loebel DAF, Rubera I, Tauc M, Wang Y, Wang Y, Wang YM, Cao Q, Wang C, Lee VWS, Alexander SI, Tam PPL, Harris DCH (2016) alpha3 Integrin of cell–cell contact mediates kidney fibrosis by integrin-linked kinase in proximal tubular E-cadherin deficient mice. Am J Pathol 186(7):1847–1860. https://doi.org/10.1016/j.ajpath.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  31. Kubow KE, Vukmirovic R, Zhe L, Klotzsch E, Smith ML, Gourdon D, Luna S, Vogel V (2015) Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat Commun 6(6):8026

    Article  CAS  PubMed  Google Scholar 

  32. Hasan HF, Abdel-Rafei MK, Galal SM (2017) Diosmin attenuates radiation-induced hepatic fibrosis by boosting PPAR-gamma expression and hampering miR-17-5p-activated canonical Wnt-beta-catenin signaling. Biochem Cell Biol 95(3):400–414. https://doi.org/10.1139/bcb-2016-0142

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Lu Y, Ong’achwa MJ, Ge L, Qian Y, Chen L, Hu X, Li F, Wei H, Zhang C, Li C, Wang Z (2018) Resveratrol inhibits the TGF-beta1-induced proliferation of cardiac fibroblasts and collagen secretion by downregulating miR-17 in Rat. Biomed Res Int. https://doi.org/10.1155/2018/8730593

    Article  PubMed  PubMed Central  Google Scholar 

  34. Heldin CH, Moustakas A (2016) Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol 8(8):a022053

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tang F, Hao Y, Zhang X, Qin J (2017) Effect of echinacoside on kidney fibrosis by inhibition of TGF-beta1/Smads signaling pathway in the db/db mice model of diabetic nephropathy. Drug Des Dev Ther 11:2813–2826. https://doi.org/10.2147/dddt.s143805

    Article  CAS  Google Scholar 

  36. Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, Dijke PT (2017) TGF-β-induced endothelial–mesenchymal transition in fibrotic diseases. Int J Mol Sci 18(10):2157

    Article  PubMed Central  Google Scholar 

  37. Sung Il K, So-Young L, Zhibo W, Yan D, Nadeem H, Jiwang Z, Jing Z, Choi ME (2014) TGF-β-activated kinase 1 is crucial in podocyte differentiation and glomerular capillary formation. J Am Soc Nephrol 25(9):1966–1978

    Article  Google Scholar 

  38. Kanamaru Y, Nakao A, Ra C, Okumura K, Muso E, Ogawa H, Kobayashi I, Horikoshi S, Tomino Y (2010) Role of transforming growth factor-β/Smad signalling pathway in enhanced production of glomerular extracellular matrix in IgA nephropathy of high-serum-IgA ddY mice. Nephrology 7(s3):S151–S155

    Google Scholar 

  39. Kim JY, An HJ, Kim WH, Gwon MG, Gu H, Park YY, Park KK (2017) Anti-fibrotic effects of synthetic oligodeoxynucleotide for TGF-beta1 and Smad in an animal model of liver cirrhosis. Mol Ther Nucleic Acids 8:250–263. https://doi.org/10.1016/j.omtn.2017.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang N, Li W, Wang X, Qi S (2018) MicroRNA-17-5p aggravates lipopolysaccharide-induced injury in nasal epithelial cells by targeting Smad7. BMC Cell Biol 19(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Geng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Chu, D. & Geng, X. Downregulation of miR-17 suppresses TGF-β1-mediated renal fibrosis through targeting Smad7. Mol Cell Biochem 476, 3051–3064 (2021). https://doi.org/10.1007/s11010-021-04140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04140-2

Keywords

Navigation