Skip to main content

Advertisement

Log in

Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Letarouilly JG, Broux O, Clabaut A (2019) New insights into the epigenetics of osteoporosis. Genomics 111(4):793–798

    Article  CAS  Google Scholar 

  2. Heino TJ, Hentunen TA (2008) Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Curr Stem Cell Res Ther 3(2):131–145

    Article  CAS  Google Scholar 

  3. Kim J, Ko J (2014) A novel PPARγ2 modulator sLZIP controls the balance between adipogenesis and osteogenesis during mesenchymal stem cell differentiation. Cell Death Differ 21(10):1642–1655

    Article  CAS  Google Scholar 

  4. Scheller EL, Rosen CJ (2014) What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 1311(1):14–30

    Article  CAS  Google Scholar 

  5. Qadir A, Liang S, Wu Z, Chen Z, Hu L, Qian A (2020) Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. Int J Mol Sci 21(1):349

    Article  CAS  Google Scholar 

  6. Peng WX, Koirala P, Mo YY (2017) LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36(41):5661–5667

    Article  CAS  Google Scholar 

  7. Wu QY, Li X, Miao ZN, Ye JX, Wang B, Zhang F, Xu RS, Jiang DL, Zhao MD, Yuan FL (2018) Long non-coding RNAs: a new regulatory code for osteoporosis. Front Endocrinol 9:587

    Article  Google Scholar 

  8. Chen X, Yang L, Ge D, Wang W, Yin Z, Yan J, Cao X, Jiang C, Zheng S, Liang B (2019) Long non-coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation. Exp Ther Med 17(1):803–811

    CAS  PubMed  Google Scholar 

  9. Feng J, Wang JX, Li CH (2019) LncRNA GAS5 overexpression alleviates the development of osteoporosis through promoting osteogenic differentiation of MSCs via targeting microRNA-498 to regulate RUNX2. Eur Rev Med Pharmacol Sci 23(18):7757–7765

    CAS  PubMed  Google Scholar 

  10. Jin SJ, Jin MZ, Xia BR, Jin WL (2019) Long non-coding RNA DANCR as an emerging therapeutic target in human cancers. Front Oncol 9:1225

    Article  Google Scholar 

  11. Zhang X, Zhao Y, Zhao Z, Han X, Chen Y (2019) Knockdown of DANCR reduces osteoclastogenesis and root resorption induced by compression force via Jagged1. Cell Cycle 18(15):1759–1769

    Article  CAS  Google Scholar 

  12. Jiang SY, Miao YX, Hirokazu T, Zhu SZ, Lu JS (2019) Effects of lncRNA DANCR on proliferation and differentiation of osteoblasts by regulating the Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 23(13):5558–5566

    PubMed  Google Scholar 

  13. Tong X, Gu PC, Xu SZ, Lin XJ (2015) Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem 79(5):732–737

    Article  CAS  Google Scholar 

  14. Hong YK, Detmar M (2003) Prox1, master regulator of the lymphatic vasculature phenotype. Cell Tissue Res 314(1):85–92

    Article  Google Scholar 

  15. Hassan MQ, Tye CE, Stein GS, Lian JB (2015) Non-coding RNAs: epigenetic regulators of bone development and homeostasis. Bone 81:746–756

    Article  CAS  Google Scholar 

  16. Ju C, Liu R, Zhang YW, Zhang Y, Zhou R, Sun J, Lv XB, Zhang Z (2019) Mesenchymal stem cell-associated lncRNA in osteogenic differentiation. Biomed Pharmacother 115:108912

    Article  CAS  Google Scholar 

  17. Wang Z, Huang Y, Tan L (2020) Downregulation of lncRNA DANCR promotes osteogenic differentiation of periodontal ligament stem cells. BMC Dev Biol 20(1):2

    Article  Google Scholar 

  18. Wang CG, Hu YH, Su SL, Zhong D (2020) LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Exp Mol Med 52(8):1310–1325

    Article  Google Scholar 

  19. Zhang J, Tao Z, Wang Y (2018) Long non-coding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway. Int J Mol Med 41(1):213–219

    CAS  PubMed  Google Scholar 

  20. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  Google Scholar 

  21. Mohr AM, Mott JL (2015) Overview of microRNA biology. Semin Liver Dis 35(1):3–11

    Article  CAS  Google Scholar 

  22. Wang J, Liu S, Li J, Zhao S, Yi Z (2019) Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Stem Cell Res Ther 10(1):197

    Article  Google Scholar 

  23. Wen J, Wang H, Dong T, Gan P, Fang H, Wu S, Li J, Zhang Y, Du R, Zhu Q (2019) STAT3-induced upregulation of lncRNA ABHD11-AS1 promotes tumour progression in papillary thyroid carcinoma by regulating miR-1301-3p/STAT3 axis and PI3K/AKT signalling pathway. Cell Prolif 52(2):e12569

    Article  Google Scholar 

  24. Zhi T, Jiang K, Zhang C, Xu X, Wu W, Nie E, Yu T, Zhou X, Bao Z, Jin X, Zhang J, Wang Y, Liu N (2017) MicroRNA-1301 inhibits proliferation of human glioma cells by directly targeting N-Ras. Am J Cancer Res 7(4):982–998

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang C, Xu Y, Cheng F, Hu Y, Yang S, Rao J, Wang X (2017) miR-1301 inhibits hepatocellular carcinoma cell migration, invasion, and angiogenesis by decreasing Wnt/β-catenin signaling through targeting BCL9. Cell Death Dis 8(8):e2999

    Article  CAS  Google Scholar 

  26. Zhang C, Xie L, Fu Y, Yang J, Cui Y (2020) lncRNA MIAT promotes esophageal squamous cell carcinoma progression by regulating miR-1301-3p/INCENP axis and interacting with SOX2. J Cell Physiol 235:7933–7944

    Article  CAS  Google Scholar 

  27. Kong J, Wan LP, Liu ZM, Gao ST (2020) MiR-1301 promotes adipogenic and osteogenic differentiation of BMSCs by targeting Satb2. Eur Rev Med Pharmacol Sci 24(7):3501–3508

    CAS  PubMed  Google Scholar 

  28. Petrova TV, Mäkinen T, Mäkelä TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Ylä-Herttuala S, Alitalo K (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21(17):4593–4599

    Article  CAS  Google Scholar 

  29. Risebro CA, Searles RG, Melville AAD, Ehler E, Jina N, Shah S, Pallas J, Hubank M, Dillard M, Harvey NL, Schwartz RJ, Chien KR, Oliver G, Riley PR (2009) Prox1 maintains muscle structure and growth in the developing heart. Development 136(3):495–505

    Article  CAS  Google Scholar 

  30. Elsir T, Smits A, Lindström MS, Nistér M (2012) Transcription factor PROX1: its role in development and cancer. Cancer Metastasis Rev 31(3-4):793–805

    Article  CAS  Google Scholar 

  31. Deng J, Dai T, Sun Y, Zhang Q, Jiang Z, Li S, Cao W (2017) Overexpression of Prox1 induces the differentiation of human adipose-derived stem cells into lymphatic endothelial-like cells in vitro. Cell Rep 19(1):54–63

    CAS  Google Scholar 

  32. Igarashi Y, Chosa N, Sawada S, Kondo H, Yaegashi T, Ishisaki A (2016) VEGF-C and TGF-β reciprocally regulate mesenchymal stem cell commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes. Int J Mol Med 37(4):1005–1013

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Zhejiang Province Public Welfare Technology Application Research Project (CN), China (Grant No. LGF20H060009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jikang Min.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, W., Di, S., Xing, S. et al. Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis. Mol Cell Biochem 476, 2503–2512 (2021). https://doi.org/10.1007/s11010-021-04074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04074-9

Keywords

Navigation