Skip to main content
Log in

KLF9 regulates PRDX6 expression in hyperglycemia-aggravated bupivacaine neurotoxicity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Background

Neurotoxicity induced by local anesthetics (LAs) is potentially life threatening, especially for patients with underlying diseases like diabetes. The anesthetic bupivacaine (Bup) has been reported to induce neurotoxicity mediated by reactive oxygen species (ROS), which is aggravated by hyperglycemia. Krüppel-like factor 9 (KLF9), an axon growth-suppressing transcription factor, plays a key role in neuronal maturation and promotes oxidative stress. This study was designed to investigate whether and how KLF9 regulates ROS levels related to LA neurotoxicity under hyperglycemic conditions.

Methods

Klf9/GFP ShRNA (LV Sh-Klf9) was used to achieve stable Klf9 knockdown in the SH-SY5Y cell line. KLF9-deficient and normal cells were cultured under normal or high-glucose (HG) culture conditions and then exposed to Bup. Cell viability, intracellular and mitochondrial ROS, and mitochondrial membrane potential (ΔΨm) were detected to examine the role of KLF9. Thereafter, KLF9-deficient and normal cells were pretreated with small-interfering RNA targeting peroxiredoxin 6 (siRNA-Prdx6) to determine if PRDX6 was the target protein in HG-aggravated Bup neurotoxicity.

Results

The mRNA and protein levels of KLF9 were increased after Bup and hyperglycemia treatment. In addition, cell survival and mitochondrial function were significantly improved, and ROS production was decreased after Sh-Klf9 treatment compared with Sh-Ctrl. Furthermore, the expression of PRDX6 was suppressed by Bup in hyperglycemic cultures and was upregulated in the Sh-Klf9 group. Moreover, the protection provided by KLF9 deficiency for cell survival, the increase in ROS production in cells and mitochondria, and the disruption of mitochondrial function were abolished by Prdx6 knockdown.

Conclusions

The results of this study demonstrated that hyperglycemia aggravated Bup neurotoxicity by upregulating KLF9 expression, which repressed the antioxidant PRDX6 and led to mitochondrial dysfunction, ROS burst, and cell death. Understanding this mechanism may, thus, offer valuable insights for the prevention and treatment of neurotoxicity induced by LAs, especially in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [L.L], upon reasonable request.

References

  1. Lirk P, Flatz M, Haller I, Hausott B, Blumenthal S, Stevens MF, Suzuki S, Klimaschewski L, Gerner P (2012) In Zucker diabetic fatty rats, subclinical diabetic neuropathy increases in vivo lidocaine block duration but not in vitro neurotoxicity. Reg Anesth Pain Med 37(6):601–606. https://doi.org/10.1097/AAP.0b013e3182664afb

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Denver RJ, Ouellet L, Furling D, Kobayashi A, Fujii-Kuriyama Y, Puymirat J (1999) Basic transcription element-binding protein (BTEB) is a thyroid hormone-regulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth. J Biol Chem 274(33):23128–23134. https://doi.org/10.1074/jbc.274.33.23128

    Article  CAS  PubMed  Google Scholar 

  3. Cui A, Fan H, Zhang Y, Zhang Y, Niu D, Liu S, Liu Q, Ma W, Shen Z, Shen L, Liu Y, Zhang H, Xue Y, Cui Y, Wang Q, Xiao X, Fang F, Yang J, Cui Q, Chang Y (2019) Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. J Clin Invest 129(6):2266–2278. https://doi.org/10.1172/jci66062

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yan Q, He B, Hao G, Liu Z, Tang J, Fu Q, Jiang CX (2019) KLF9 aggravates ischemic injury in cardiomyocytes through augmenting oxidative stress. Life Sci 233:116641. https://doi.org/10.1016/j.lfs.2019.116641

    Article  CAS  PubMed  Google Scholar 

  5. Li YJ, Zhao W, Yu XJ, Li FX, Liu ZT, Li L, Xu SY (2017) Activation of p47phox as a mechanism of bupivacaine-induced burst production of reactive oxygen species and neural toxicity. Oxid Med Cell Longev 2017:8539026. https://doi.org/10.1155/2017/8539026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chhunchha B, Kubo E, Singh DP (2019) Sulforaphane-induced Klf9/Prdx6 axis acts as a molecular switch to control redox signaling and determines fate of cells. Cells. https://doi.org/10.3390/cells8101159

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee DH, Jung YY, Park MH, Jo MR, Han SB, Yoon DY, Roh YS, Hong JT (2019) Peroxiredoxin 6 confers protection against nonalcoholic fatty liver disease through maintaining mitochondrial function. Antioxid Redox Signal 31(5):387–402. https://doi.org/10.1089/ars.2018.7544

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Ye XP, Lu AZ, Zhou SQ, Liu H, Liu ZJ, Jiang S, Xu SY (2013) Hyperglycemia magnifies bupivacaine-induced cell apoptosis triggered by mitochondria dysfunction and endoplasmic reticulum stress. J Neurosci Res 91(6):786–798. https://doi.org/10.1002/jnr.23216

    Article  CAS  PubMed  Google Scholar 

  9. Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG (2004) Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem 279(49):50994–51001. https://doi.org/10.1074/jbc.M409482200

    Article  CAS  PubMed  Google Scholar 

  10. Ma S, Zhang X, Zheng L, Li Z, Zhao X, Lai W, Shen H, Lv J, Yang G, Wang Q, Ji J (2016) Peroxiredoxin 6 is a crucial factor in the initial step of mitochondrial clearance and is upstream of the PINK1-parkin pathway. Antioxid Redox Signal 24(9):486–501. https://doi.org/10.1089/ars.2015.6336

    Article  CAS  PubMed  Google Scholar 

  11. Practical guide for the management of systemic toxicity caused by local anesthetics (2019) J Anesthesia 33(1):1–8. https://doi.org/10.1007/s00540-018-2542-4

  12. Boretsky KR (2019) A review of regional anesthesia in infants. Paediatr Drugs 21(6):439–449. https://doi.org/10.1007/s40272-019-00360-8

    Article  PubMed  Google Scholar 

  13. Ran J, Wang Y, Li F, Zhang W, Ma M (2015) Pharmacodynamics and pharmacokinetics of levobupivacaine used for epidural anesthesia in patients with liver dysfunction. Cell Biochem Biophys 73(3):717–721. https://doi.org/10.1007/s12013-015-0677-6

    Article  CAS  PubMed  Google Scholar 

  14. Salviz EA, Onbasi S, Ozonur A, Orhan-Sungur M, Berkoz O, Tugrul KM (2017) Comparison of ultrasound-guided axillary brachial plexus block properties in diabetic and nondiabetic patients: a prospective observational study. J Hand Surg 42(3):190–197. https://doi.org/10.1016/j.jhsa.2017.01.009

    Article  Google Scholar 

  15. Hebl JR, Kopp SL, Schroeder DR, Horlocker TT (2006) Neurologic complications after neuraxial anesthesia or analgesia in patients with preexisting peripheral sensorimotor neuropathy or diabetic polyneuropathy. Anesth Analg 103(5):1294–1299. https://doi.org/10.1213/01.ane.0000243384.75713.df

    Article  PubMed  Google Scholar 

  16. Lirk P, Rutten MV, Haller I, Stevens MF, Laudolff-Birmingham J, Hollmann M, Birmingham B (2013) Management of the patient with diabetic peripheral neuropathy presenting for peripheral regional anesthesia: a European survey and review of literature. Minerva Anestesiol 79(9):1039–1048

    CAS  PubMed  Google Scholar 

  17. Ten Hoope W, Hollmann MW, de Bruin K, Verberne HJ, Verkerk AO, Tan HL, Verhamme C, Horn J, Rigaud M, Picardi S, Lirk P (2018) Pharmacodynamics and pharmacokinetics of lidocaine in a rodent model of diabetic neuropathy. Anesthesiology 128(3):609–619. https://doi.org/10.1097/aln.0000000000002035

    Article  PubMed  Google Scholar 

  18. Kroin JS, Buvanendran A, Tuman KJ, Kerns JM (2012) Safety of local anesthetics administered intrathecally in diabetic rats. Pain Med (Malden, Mass) 13(6):802–807. https://doi.org/10.1111/j.1526-4637.2012.01396.x

    Article  Google Scholar 

  19. Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science (New York, NY) 326(5950):298–301. https://doi.org/10.1126/science.1175737

    Article  CAS  Google Scholar 

  20. Apara A, Galvao J, Wang Y, Blackmore M, Trillo A, Iwao K, Brown DP Jr, Fernandes KA, Huang A, Nguyen T, Ashouri M, Zhang X, Shaw PX, Kunzevitzky NJ, Moore DL, Libby RT, Goldberg JL (2017) KLF9 and JNK3 interact to suppress Axon regeneration in the adult CNS. J Neurosci 37(40):9632–9644. https://doi.org/10.1523/jneurosci.0643-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Besnard A, Langberg T, Levinson S, Chu D, Vicidomini C, Scobie KN, Dwork AJ, Arango V, Rosoklija GB, Mann JJ, Hen R, Leonardo ED, Boldrini M, Sahay A (2018) Targeting Kruppel-like Factor 9 in excitatory neurons protects against chronic stress-induced impairments in dendritic spines and fear responses. Cell reports 23(11):3183–3196. https://doi.org/10.1016/j.celrep.2018.05.040

    Article  CAS  PubMed  Google Scholar 

  22. Cui A, Fan H, Zhang Y, Zhang Y, Niu D, Liu S, Liu Q, Ma W, Shen Z, Shen L, Liu Y, Zhang H, Xue Y, Cui Y, Wang Q, Xiao X, Fang F, Yang J, Cui Q, Chang Y (2019) Dexamethasone-induced Kruppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. J Clin Invest 129(6):2266–2278. https://doi.org/10.1172/jci66062

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cui C, Cui Y, Fu Y, Ma S, Zhang S (2018) Microarray analysis reveals gene and microRNA signatures in diabetic kidney disease. Mol Med Rep 17(2):2161–2168. https://doi.org/10.3892/mmr.2017.8177

    Article  CAS  PubMed  Google Scholar 

  24. Liu ZJ, Zhao W, Zhang QG, Li L, Lai LY, Jiang S, Xu SY (2015) OGG1 involvement in high glucose-mediated enhancement of bupivacaine-induced oxidative DNA damage in SH-SY5Y cells. Oxid Med Cell Longev 2015:683197. https://doi.org/10.1155/2015/683197

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rocourt CR, Wu M, Chen BP, Cheng WH (2013) The catalytic subunit of DNA-dependent protein kinase is downstream of ATM and feeds forward oxidative stress in the selenium-induced senescence response. J Nutr Biochem 24(5):781–787. https://doi.org/10.1016/j.jnutbio.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  26. Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K (2020) Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules. https://doi.org/10.3390/biom10020320

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zucker SN, Fink EE, Bagati A, Mannava S, Bianchi-Smiraglia A, Bogner PN, Wawrzyniak JA, Foley C, Leonova KI, Grimm MJ, Moparthy K, Ionov Y, Wang J, Liu S, Sexton S, Kandel ES, Bakin AV, Zhang Y, Kaminski N, Segal BH, Nikiforov MA (2014) Nrf2 amplifies oxidative stress via induction of Klf9. Mol Cell 53(6):916–928. https://doi.org/10.1016/j.molcel.2014.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buvelot H, Jaquet V, Krause KH (2019) Mammalian NADPH oxidases. Methods Mol Biol (Clifton, NJ) 1982:17–36. https://doi.org/10.1007/978-1-4939-9424-3_2

    Article  CAS  Google Scholar 

  29. Ai F, Zhao G, Lv W, Liu B, Lin J (2020) Dexamethasone induces aberrant macrophage immune function and apoptosis. Oncol Rep 43(2):427–436. https://doi.org/10.3892/or.2019.7434

    Article  CAS  PubMed  Google Scholar 

  30. Sun C, Wang Z, Liu Y, Liu Y, Li H, Di C, Wu Z, Gan L, Zhang H (2014) Carbon ion beams induce hepatoma cell death by NADPH oxidase-mediated mitochondrial damage. J Cell Physiol 229(1):100–107. https://doi.org/10.1002/jcp.24424

    Article  CAS  PubMed  Google Scholar 

  31. Pacifici F, Arriga R, Sorice GP, Capuani B, Scioli MG, Pastore D, Donadel G, Bellia A, Caratelli S, Coppola A, Ferrelli F, Federici M, Sconocchia G, Tesauro M, Sbraccia P, Della-Morte D, Giaccari A, Orlandi A, Lauro D (2014) Peroxiredoxin 6, a novel player in the pathogenesis of diabetes. Diabetes 63(10):3210–3220. https://doi.org/10.2337/db14-0144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by the grants from the National Natural Science Foundation of China (No.81873763) and Medical Scientific Research Foundation of Guangdong Province of China(A2020165).

Funding

This research was supported by the grants from the National Natural Science Foundation of China (No.81873763) and Medical Scientific Research Foundation of Guangdong Province of China(A2020165).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhang or Le Li.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Weng, Y., Lai, L. et al. KLF9 regulates PRDX6 expression in hyperglycemia-aggravated bupivacaine neurotoxicity. Mol Cell Biochem 476, 2125–2134 (2021). https://doi.org/10.1007/s11010-021-04059-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04059-8

Keywords

Navigation