Skip to main content
Log in

Characterization of exosomal long non-coding RNAs in chondrogenic differentiation of human adipose-derived stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The exosomes derived from chondrogenic stem cells and long non-coding RNAs (lncRNAs) play a key role in cartilage regeneration. Here, we investigated the expression profile of exosomal lncRNAs in chondrogenesis of human adipose derived stem cells (hADSCs). hADSCs were induced to differentiate into chondrocytes in vitro. Exosomes from undifferentiated hADSCs and chondrogenic hADSCs were isolated. LncRNA and mRNA expression profiles in the isolated exosomes were analyzed by RNA sequencing. The resultant data were subjected to gene ontology (GO) terms and KEGG pathway analysis to identify differentially expressed lncRNAs. We identified 23 upregulated and 163 downregulated lncRNAs in exosomes derived from chondrogenic hADSCs compared to that in exosomes from undifferentiated hADSCs. In addition, analysis of mRNA expression data revealed 968 upregulated genes and 572 downregulated genes in exosomes of chondrogenic hADSCs. Lncrna and mRNA expression levels were further validated by qRT–PCR. Differentially expressed lncRNAs and mRNAs were utilized to construct a coding–non–coding gene co-expression network (CNC network). GO terms and KEGG pathway enrichment analysis revealed several significant processes differentially regulated between undifferentiated hADSCs and chondrogenic hADSCs. Taken together, this study revealed the differential expression of exosomal lncRNAs of chondrogenic hADSCs and provided a foundation for future study on the cartilage recovery mechanism of exosomes derived from chondrogenic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707. https://doi.org/10.1002/art.34453

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  3. Jiang S, Lu J, Deng Z, Li Y, Lei G (2017) Long noncoding RNAs in osteoarthritis. Joint Bone Spine 84:553–556. https://doi.org/10.1016/j.jbspin.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  4. Cen X, Huang X, Sun W, Liu Q, Liu J (2017) Long noncoding RNAs: a new regulatory code in osteoarthritis. Am J Transl Res 9:4747

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Li Z, Li C, Zeng Y, Liu Y (2019) Long noncoding RNA TM1P3 is involved in osteoarthritis by mediating chondrocyte extracellular matrix degradation. J Cell Biochem. https://doi.org/10.1002/jcb.28539

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gao GC, Cheng XG, Wei QQ, Chen WC, Huang WZ (2019) Long noncoding RNA MALAT-1 inhibits apoptosis and matrix metabolism disorder in interleukin-1beta-induced inflammation in articular chondrocytes via the JNK signaling pathway. J Cell Biochem. https://doi.org/10.1002/jcb.28977

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3:15. https://doi.org/10.3410/B3-15

    Article  PubMed  PubMed Central  Google Scholar 

  8. Familtseva A, Jeremic N, Tyagi SC (2019) Exosomes: cell-created drug delivery systems. Mol Cell Biochem 459:1–6. https://doi.org/10.1007/s11010-019-03545-4

    Article  CAS  PubMed  Google Scholar 

  9. Nabet BY, Qiu Y, Shabason JE et al (2017) Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell 170:352–366. https://doi.org/10.1016/j.cell.2017.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bang C, Thum T (2012) Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol 44:2060–2064. https://doi.org/10.1016/j.biocel.2012.08.007

    Article  CAS  Google Scholar 

  11. Zhang S, Chu WC, Lai RC et al (2016) Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil 24:2135–2140. https://doi.org/10.1016/j.joca.2016.06.022

    Article  CAS  Google Scholar 

  12. Toh WS, Lai RC, Hui JHP, Lim SK (2017) MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Semin Cell Dev Biol 67:56–64. https://doi.org/10.1016/j.semcdb.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  13. Vonk LA, van Dooremalen S, Liv N et al (2018) Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics 8:906–920. https://doi.org/10.7150/thno.20746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Zou R, Wang Z et al (2018) Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem J 475:3629–3638. https://doi.org/10.1042/BCJ20180675

    Article  CAS  PubMed  Google Scholar 

  15. Tao S, Yuan T, Zhang Y et al (2017) Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 7:180–195. https://doi.org/10.7150/thno.17133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun H, Hu S, Zhang Z et al (2019) Expression of exosomal microRNAs during chondrogenic differentiation of human bone mesenchymal stem cells. J Cell Biochem 120:171–181. https://doi.org/10.1002/jcb.27289

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Zhang H, Kang Y et al (2012) miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells. J Cell Biochem 113:888–898. https://doi.org/10.1002/jcb.23418

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Z, Kang Y, Zhang Z et al (2012) Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthr Cartil 20:1638–1646. https://doi.org/10.1016/j.joca.2012.08.024

    Article  CAS  Google Scholar 

  19. Hu S, Mao G, Zhang Z et al (2019) MicroRNA-320c inhibits development of osteoarthritis through downregulation of canonical Wnt signaling pathway. Life Sci 228:242–250. https://doi.org/10.1016/j.lfs.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  20. Xia B, Chen Di, Zhang J et al (2014) Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 95:495–505. https://doi.org/10.1007/s00223-014-9917-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang S, Chuah SJ, Lai RC et al (2018) MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 156:16–27. https://doi.org/10.1016/j.biomaterials.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  22. Zhang S, Teo K, Chuah SJ et al (2019) MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials 200:35–47. https://doi.org/10.1016/j.biomaterials.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  23. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pearson MJ, Jones SW (2016) Review: long noncoding RNAs in the regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis. Arthritis Rheumatol 68:2575–2583. https://doi.org/10.1002/art.39759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tazumi S, Yabe S, Uchiyama H (2010) Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis. Dev Biol 346:170–180. https://doi.org/10.1016/j.ydbio.2010.07.028

    Article  CAS  PubMed  Google Scholar 

  26. Sun F, Yang Q, Weng W et al (2013) Chd4 and associated proteins function as corepressors of Sox9 expression during BMP-2-induced chondrogenesis. J Bone Miner Res 28:1950–1961. https://doi.org/10.1002/jbmr.1932

    Article  CAS  PubMed  Google Scholar 

  27. Somogyi C, Matta C, Foldvari Z et al (2015) Polymodal transient receptor potential vanilloid (TRPV) ion channels in chondrogenic cells. Int J Mol Sci 16:18412–18438. https://doi.org/10.3390/ijms160818412

    Article  CAS  PubMed  Google Scholar 

  28. Huang M, Zhao J, Xu J et al (2019) lncRNA ADAMTS9-AS2 controls human mesenchymal stem cell chondrogenic differentiation and functions as a ceRNA. Mol Ther Nucleic Acids 18:533–545. https://doi.org/10.1016/j.omtn.2019.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen K, Fang H, Xu N (2020) LncRNA LOXL1-AS1 is transcriptionally activated by JUND and contributes to osteoarthritis progression via targeting the miR-423-5p/KDM5C axis. Life Sci 258:118095. https://doi.org/10.1016/j.lfs.2020.118095

    Article  CAS  PubMed  Google Scholar 

  30. Pan L, Liu D, Zhao L et al (2018) Long noncoding RNA MALAT1 alleviates lipopolysaccharide-induced inflammatory injury by upregulating microRNA-19b in murine chondrogenic ATDC5 cells. J Cell Biochem 119:10165–10175. https://doi.org/10.1002/jcb.27357

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Nature Science Foundation of China (81874014, 81672198, 81802187), Natural Science Foundation of Guangdong Province (2018030310355, 2017A030313804).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guping Mao or Shu Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This study adhered to the standards of the Ethics committee on Human Experimentation at the First Affiliated Hospital of Sun Yat-Sen University, China (IRB:2014C-028) and the Helsinki Declaration (2000). Informed consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1159 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Huang, G., Mao, G. et al. Characterization of exosomal long non-coding RNAs in chondrogenic differentiation of human adipose-derived stem cells. Mol Cell Biochem 476, 1411–1420 (2021). https://doi.org/10.1007/s11010-020-04003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-04003-2

Keywords

Navigation