Skip to main content

Advertisement

Log in

Regulation of the parental gene GRM4 by circGrm4 RNA transcript and glutamate-mediated neurovascular toxicity in eyes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Epigenetic memory plays crucial roles in gene regulation. It not only modulates the expression of specific genes but also has ripple effects on transcription as well as translation of other genes. Very often an alteration in expression occurs either via methylation or demethylation. In this context, “1-carbon metabolism” assumes a special significance since its dysregulation by higher levels of homocysteine; Hcy (known as hyperhomocysteinemia; HHcy), a byproduct of “1-Carbon Metabolism” during methionine biosynthesis leads to serious implications in cardiovascular, renal, cerebrovascular systems, and a host of other conditions. Currently, the circular RNAs (circRNAs) generated via non-canonical back-splicing events from the pre-mRNA molecules are at the center stage for their essential roles in diseases via their epigenetic manifestations. We recently identified a circular RNA transcript (circGRM4) that is significantly upregulated in the eye of cystathionine β-synthase-deficient mice. We also discovered a concurrent over-expression of the mGLUR4 receptor in the eyes of these mice. In brief, circGRM4 is selectively transcribed from its parental mGLUR4 receptor gene (GRM4) functions as a “molecular-sponge” for the miRNAs and results into excessive turnover of the mGLUR4 receptor in the eye in response to extremely high circulating glutamate concentration. We opine that this epigenetic manifestation potentially predisposes HHcy people to retinovascular malfunctioning.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yorston D (2003) Retinal diseases and VISION 2020. Community Eye Health 16:19–20

    Google Scholar 

  2. Malek G, Busik J, Grant MB, Choudhary M (2018) Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 13:359–377. https://doi.org/10.1080/17460441.2018.1430136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. George AK, Master K, Majumder A, Homme RP, Laha A, Sandhu HS, Tyagi SC, Singh M (2019) Circular RNAs constitute an inherent gene regulatory axis in the mammalian eye and brain (1). Can J Physiol Pharmacol 97:463–472. https://doi.org/10.1139/cjpp-2018-0505

    Article  CAS  PubMed  Google Scholar 

  4. Singh M, George AK, Homme RP, Majumder A, Laha A, Sandhu HS, Tyagi SC (2018) Circular RNAs profiling in the cystathionine-beta-synthase mutant mouse reveals novel gene targets for hyperhomocysteinemia induced ocular disorders. Exp Eye Res 174:80–92. https://doi.org/10.1016/j.exer.2018.05.026

    Article  CAS  PubMed  Google Scholar 

  5. Singh M, George AK, Homme RP, Majumder A, Laha A, Sandhu HS, Tyagi SC (2019) Expression analysis of the circular RNA molecules in the human retinal cells treated with homocysteine. Curr Eye Res 44:287–293. https://doi.org/10.1080/02713683.2018.1542005

    Article  CAS  PubMed  Google Scholar 

  6. D’Urso A, Brickner JH (2014) Mechanisms of epigenetic memory. Trends Genet 30:230–236. https://doi.org/10.1016/j.tig.2014.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaturvedi P, Tyagi SC (2014) Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol 173:1–11. https://doi.org/10.1016/j.ijcard.2014.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kalani A, Kamat PK, Tyagi SC, Tyagi N (2013) Synergy of homocysteine, microRNA, and epigenetics: a novel therapeutic approach for stroke. Mol Neurobiol 48:157–168. https://doi.org/10.1007/s12035-013-8421-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tyagi SC, Joshua IG (2014) Exercise and nutrition in myocardial matrix metabolism, remodeling, regeneration, epigenetics, microcirculation, and muscle. Can J Physiol Pharmacol 92:521–523. https://doi.org/10.1139/cjpp-2014-0197

    Article  CAS  PubMed  Google Scholar 

  10. Veeranki S, Winchester LJ, Tyagi SC (2015) Hyperhomocysteinemia associated skeletal muscle weakness involves mitochondrial dysfunction and epigenetic modifications. Biochim Biophys Acta 1852:732–741. https://doi.org/10.1016/j.bbadis.2015.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weber GJ, Pushpakumar S, Tyagi SC, Sen U (2016) Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacol Res 113:300–312. https://doi.org/10.1016/j.phrs.2016.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perla-Kajan J, Jakubowski H (2019) Dysregulation of epigenetic mechanisms of gene expression in the pathologies of hyperhomocysteinemia. Int J Mol Sci. https://doi.org/10.3390/ijms20133140

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moretti R, Caruso P (2019) The controversial role of homocysteine in neurology: from labs to clinical practice. Int J Mol Sci. https://doi.org/10.3390/ijms20010231

    Article  PubMed  PubMed Central  Google Scholar 

  14. Machado FR, Ferreira AG, da Cunha AA, Tagliari B, Mussulini BH, Wofchuk S, Wyse AT (2011) Homocysteine alters glutamate uptake and Na+, K+-ATPase activity and oxidative status in rats hippocampus: protection by vitamin C. Metab Brain Dis 26:61–67. https://doi.org/10.1007/s11011-011-9232-3

    Article  CAS  PubMed  Google Scholar 

  15. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  16. Yang S, Sun Z, Zhou Q, Wang W, Wang G, Song J, Li Z, Zhang Z, Chang Y, Xia K, Liu J, Yuan W (2018) MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer Manag Res 10:2249–2257. https://doi.org/10.2147/cmar.S166308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8:73271–73281. https://doi.org/10.18632/oncotarget.19154

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ishikawa M (2013) Abnormalities in glutamate metabolism and excitotoxicity in the retinal diseases. Scientifica (Cairo) 2013:528940. https://doi.org/10.1155/2013/528940

    Article  CAS  Google Scholar 

  19. Majtan T, Park I, Bublil EM, Kraus JP (2018) Enzyme replacement therapy prevents loss of bone and fat mass in murine homocystinuria. Hum Mutat 39:210–218. https://doi.org/10.1002/humu.23360

    Article  CAS  PubMed  Google Scholar 

  20. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113:274–284. https://doi.org/10.1172/jci19874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gupta S, Kruger WD (2011) Cystathionine beta-synthase deficiency causes fat loss in mice. PLoS ONE 6:e27598. https://doi.org/10.1371/journal.pone.0027598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kruger WD, Gupta S (2016) The effect of dietary modulation of sulfur amino acids on cystathionine beta synthase-deficient mice. Ann N Y Acad Sci 1363:80–90. https://doi.org/10.1111/nyas.12967

    Article  CAS  PubMed  Google Scholar 

  23. Koutmos M, Kabil O, Smith JL, Banerjee R (2010) Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine {beta}-synthase. Proc Natl Acad Sci USA 107:20958–20963. https://doi.org/10.1073/pnas.1011448107

    Article  PubMed  PubMed Central  Google Scholar 

  24. Albertini E, Koziel R, Durr A, Neuhaus M, Jansen-Durr P (2012) Cystathionine beta synthase modulates senescence of human endothelial cells. Aging (Albany NY) 4:664–673. https://doi.org/10.18632/aging.100491

    Article  CAS  Google Scholar 

  25. Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, Espindola de Freitas A et al (2019) The energetic brain. J Neurochem 151(2):139–165. https://doi.org/10.1111/jnc.14829

    Article  CAS  PubMed  Google Scholar 

  26. Sun J, Li B, Shu C, Ma Q, Wang J (2020) Functions and clinical significance of circular RNAs in glioma. Mol Cancer 19:34. https://doi.org/10.1186/s12943-019-1121-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sekar S, Liang WS (2019) Circular RNA expression and function in the brain. Noncoding RNA Res 4:23–29. https://doi.org/10.1016/j.ncrna.2019.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842. https://doi.org/10.1261/rna.047126.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Piwecka M, Glazar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, Trimbuch T, Zywitza V, Plass M, Schreyer L, Ayoub S, Kocks C, Kuhn R, Rosenmund C, Birchmeier C, Rajewsky N (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. https://doi.org/10.1126/science.aam8526

    Article  PubMed  Google Scholar 

  30. Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907. https://doi.org/10.1046/j.1471-4159.2000.0750889.x

    Article  CAS  PubMed  Google Scholar 

  31. Crupi R, Impellizzeri D, Cuzzocrea S (2019) Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci 12:20. https://doi.org/10.3389/fnmol.2019.00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wery M, Kwapisz M, Morillon A (2011) Noncoding RNAs in gene regulation. Wiley Interdiscip Rev Syst Biol Med 3:728–738. https://doi.org/10.1002/wsbm.148

    Article  CAS  PubMed  Google Scholar 

  33. George AK, Homme RP, Majumder A, Laha A, Metreveli N, Sandhu HS, Tyagi SC, Singh M (2019) Hydrogen sulfide intervention in cystathionine-beta-synthase mutant mouse helps restore ocular homeostasis. Int J Ophthalmol 12:754–764. https://doi.org/10.18240/ijo.2019.05.09

    Article  PubMed  PubMed Central  Google Scholar 

  34. Muramatsu T, Miyauchi T (2003) Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol Histopathol 18:981–987. https://doi.org/10.14670/hh-18.981

    Article  CAS  PubMed  Google Scholar 

  35. Wei M, Li H, Shang Y, Zhou Z, Zhang J (2014) Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury. Brain Res 1585:150–158. https://doi.org/10.1016/j.brainres.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  36. Grass GD, Toole BP (2015) How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 3:e00283. https://doi.org/10.1042/bsr20150256

    Article  Google Scholar 

  37. Fujimura N (2016) WNT/beta-catenin signaling in vertebrate eye development. Front Cell Dev Biol 4:138. https://doi.org/10.3389/fcell.2016.00138

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lutgen V, Narasipura SD, Sharma A, Min S, Al-Harthi L (2016) beta-Catenin signaling positively regulates glutamate uptake and metabolism in astrocytes. J Neuroinflammation 13:242. https://doi.org/10.1186/s12974-016-0691-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salman MM, Kitchen P, Woodroofe MN, Bill RM, Conner AC, Heath PR, Conner MT (2017) Transcriptome analysis of gene expression provides new insights into the effect of mild therapeutic hypothermia on primary human cortical astrocytes cultured under hypoxia. Front Cell Neurosci 2017(11):386. https://doi.org/10.3389/fncel.2017.00386

    Article  CAS  Google Scholar 

  40. Teh J, Chen S (2012) Metabotropic glutamate receptors and cancerous growth. WIREs Membr Transp Signal 1:211–220. https://doi.org/10.1002/wmts.21

    Article  CAS  Google Scholar 

  41. Eikelboom JW, Hankey GJ, Anand SS, Lofthouse E, Staples N, Baker RI (2000) Association between high homocyst(e)ine and ischemic stroke due to large- and small-artery disease but not other etiologic subtypes of ischemic stroke. Stroke 31:1069–1075. https://doi.org/10.1161/01.str.31.5.1069

    Article  CAS  PubMed  Google Scholar 

  42. Liu F, Zhang J, Yu S, Wang R, Wang B, Lai L, Yin H, Liu G (2008) Effect of folate on neointima formation and matrix metalloproteinase-9 expression after balloon injury in hyperhomocysteinemic rabbits. Int J Cardiol 131:59–65. https://doi.org/10.1016/j.ijcard.2007.08.138

    Article  PubMed  Google Scholar 

  43. Selhub J, Jacques PF, Bostom AG, D’Agostino RB, Wilson PW, Belanger AJ, O’Leary DH, Wolf PA, Schaefer EJ, Rosenberg IH (1995) Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 332:286–291. https://doi.org/10.1056/nejm199502023320502

    Article  CAS  PubMed  Google Scholar 

  44. Rolland PH, Friggi A, Barlatier A, Piquet P, Latrille V, Faye MM, Guillou J, Charpiot P, Bodard H, Ghiringhelli O et al (1995) Hyperhomocysteinemia-induced vascular damage in the minipig. Captopril-hydrochlorothiazide combination prevents elastic alterations. Circulation 91:1161–1174. https://doi.org/10.1161/01.cir.91.4.1161

    Article  CAS  PubMed  Google Scholar 

  45. Tsai JC, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R, Lee ME (1994) Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 91:6369–6373. https://doi.org/10.1073/pnas.91.14.6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iadecola C, Davisson RL (2008) Hypertension and cerebrovascular dysfunction. Cell Metab 7:476–484. https://doi.org/10.1016/j.cmet.2008.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baumbach GL, Sigmund CD, Bottiglieri T, Lentz SR (2002) Structure of cerebral arterioles in cystathionine beta-synthase-deficient mice. Circ Res 91:931–937. https://doi.org/10.1161/01.res.0000041408.64867.1d

    Article  CAS  PubMed  Google Scholar 

  48. Ovechkin AV, Tyagi N, Sen U, Lominadze D, Steed MM, Moshal KS, Tyagi SC (2006) 3-Deazaadenosine mitigates arterial remodeling and hypertension in hyperhomocysteinemic mice. Am J Physiol Lung Cell Mol Physiol 291:L905–L911. https://doi.org/10.1152/ajplung.00543.2005

    Article  CAS  PubMed  Google Scholar 

  49. Beard RS Jr, Bearden SE (2011) Vascular complications of cystathionine beta-synthase deficiency: future directions for homocysteine-to-hydrogen sulfide research. Am J Physiol Heart Circ Physiol 300:H13-26. https://doi.org/10.1152/ajpheart.00598.2010

    Article  CAS  PubMed  Google Scholar 

  50. Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K (2010) Mammalian target of rapamycin: hitting the bull’s-eye for neurological disorders. Oxid Med Cell Longev 3:374–391. https://doi.org/10.4161/oxim.3.6.14787

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gong R, Park CS, Abbassi NR, Tang SJ (2006) Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. J Biol Chem 281:18802–18815. https://doi.org/10.1074/jbc.M512524200

    Article  CAS  PubMed  Google Scholar 

  52. Katiyar S, Liu E, Knutzen CA, Lang ES, Lombardo CR, Sankar S, Toth JI, Petroski MD, Ronai Z, Chiang GG (2009) REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A-DDB1 ubiquitin ligase. EMBO Rep 10:866–872. https://doi.org/10.1038/embor.2009.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duman RS, Sanacora G, Krystal JH (2019) Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 102:75–90. https://doi.org/10.1016/j.neuron.2019.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tan CY, Hagen T (2013) mTORC1 dependent regulation of REDD1 protein stability. PLoS ONE 8:e63970. https://doi.org/10.1371/journal.pone.0063970

    Article  PubMed  PubMed Central  Google Scholar 

  55. Miller WP, Yang C, Mihailescu ML, Moore JA, Dai W, Barber AJ, Dennis MD (2018) Deletion of the Akt/mTORC1 repressor REDD1 prevents visual dysfunction in a rodent model of Type 1 diabetes. Diabetes 67:110–119. https://doi.org/10.2337/db17-0728

    Article  CAS  PubMed  Google Scholar 

  56. Dong E, Ruzicka WB, Grayson DR, Guidotti A (2015) DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients. Schizophr Res 167:35–41. https://doi.org/10.1016/j.schres.2014.10.030

    Article  CAS  PubMed  Google Scholar 

  57. Kalyanasundaram TS, Black GC, O’Sullivan J, Bishop PN (2009) A novel peripherin/RDS mutation resulting in a retinal dystrophy with phenotypic variation. Eye (Lond) 23:237–239. https://doi.org/10.1038/eye.2008.33

    Article  CAS  Google Scholar 

  58. Yang X, Chung JY, Rai U, Esumi N (2018) Cadherins in the retinal pigment epithelium (RPE) revisited: P-cadherin is the highly dominant cadherin expressed in human and mouse RPE in vivo. PLoS ONE 13:e0191279. https://doi.org/10.1371/journal.pone.0191279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res 37:3483–3493. https://doi.org/10.1016/s0042-6989(97)00047-3

    Article  CAS  PubMed  Google Scholar 

  60. Mizuno F, Barabas P, Krizaj D, Akopian A (2010) Glutamate-induced internalization of Ca(v)1.3 L-type Ca(2+) channels protects retinal neurons against excitotoxicity. J Physiol 588:953–966. https://doi.org/10.1113/jphysiol.2009.181305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cummins PM (2012) Occludin: one protein, many forms. Mol Cell Biol 32:242–250. https://doi.org/10.1128/mcb.06029-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Andras IE, Deli MA, Veszelka S, Hayashi K, Hennig B, Toborek M (2007) The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J Cereb Blood Flow Metab 27:1431–1443. https://doi.org/10.1038/sj.jcbfm.9600445

    Article  CAS  PubMed  Google Scholar 

  63. Paynter NP, Balasubramanian R, Giulianini F, Wang DD, Tinker LF, Gopal S, Deik AA, Bullock K, Pierce KA, Scott J, Martinez-Gonzalez MA, Estruch R, Manson JE, Cook NR, Albert CM, Clish CB, Rexrode KM (2018) Metabolic predictors of incident coronary heart disease in women. Circulation 137:841–853. https://doi.org/10.1161/circulationaha.117.029468

    Article  PubMed  PubMed Central  Google Scholar 

  64. Grajeda-Iglesias C, Aviram M (2018) Specific amino acids affect cardiovascular diseases and atherogenesis via protection against macrophage foam cell formation: review article. Rambam Maimonides Med J. https://doi.org/10.5041/rmmj.10337

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721. https://doi.org/10.1038/nri3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rom O, Grajeda-Iglesias C, Najjar M, Abu-Saleh N, Volkova N, Dar DE, Hayek T, Aviram M (2017) Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. J Nutr Biochem 45:24–38. https://doi.org/10.1016/j.jnutbio.2017.02.023

    Article  CAS  PubMed  Google Scholar 

  67. Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H, Amatore C, Arbault S, Hamel E, Cauli B (2006) Glutamatergic control of microvascular tone by distinct GABA neurons in the cerebellum. J Neurosci 26:6997–7006. https://doi.org/10.1523/jneurosci.5515-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Vogel HJ, Almutiri S, Logan A, Kreida S, Al-Jubair T, Missel JW, Gourdon P et al (2020) Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell 181(4):784–799. https://doi.org/10.1016/j.cell.2020.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065. https://doi.org/10.1126/science.1219855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a011072

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang C, Yuan XR, Li HY, Zhao ZJ, Liao YW, Wang XY, Su J, Sang SS, Liu Q (2014) Downregualtion of dynamin-related protein 1 attenuates glutamate-induced excitotoxicity via regulating mitochondrial function in a calcium dependent manner in HT22 cells. Biochem Biophys Res Commun 443:138–143. https://doi.org/10.1016/j.bbrc.2013.11.072

    Article  CAS  PubMed  Google Scholar 

  72. Vaarmann A, Kovac S, Holmstrom KM, Gandhi S, Abramov AY (2013) Dopamine protects neurons against glutamate-induced excitotoxicity. Cell Death Dis 4:e455. https://doi.org/10.1038/cddis.2012.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lewerenz J, Maher P (2015) Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci 9:469. https://doi.org/10.3389/fnins.2015.00469

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lee KE, Kang YS (2018) l-Citrulline restores nitric oxide level and cellular uptake at the brain capillary endothelial cell line (TR-BBB cells) with glutamate cytotoxicity. Microvasc Res 120:29–35. https://doi.org/10.1016/j.mvr.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  75. Ackland P, Resnikoff S, Bourne R (2017) World blindness and visual impairment: despite many successes, the problem is growing. Community Eye Health 30:71–73

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all members of the laboratory for their continuous help and excellent support. The part of this study was supported by NIH Grants, HL139047, AR-71789, and DK116591.

Author information

Authors and Affiliations

Authors

Contributions

MS conceived, edited, and finalized the manuscript while WE and AKG worked on the experiments and drafted the manuscript. The other co-authors helped in providing reagents and the feedback in moving the project forward. All authors approved the final version of the manuscript before its submission.

Corresponding author

Correspondence to Mahavir Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyob, W., George, A.K., Homme, R.P. et al. Regulation of the parental gene GRM4 by circGrm4 RNA transcript and glutamate-mediated neurovascular toxicity in eyes. Mol Cell Biochem 476, 663–673 (2021). https://doi.org/10.1007/s11010-020-03934-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03934-0

Keywords

Navigation