Skip to main content

Advertisement

Log in

Recent updates on novel therapeutic targets of cardiovascular diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In recent times cardiovascular diseases (CVDs) are the leading cause of mortality universally, caused more or less 17.7 million casualties with 45% of all illnesses (except communicable ones) in 2015 as per World Health Organization (WHO). According to American National Center for Health Statistics, cardiac disorders are costliest. Moreover, health care expenditures related to cardiac disorders are anticipated to exceed than diabetes and Alzheimer’s. Straining of reactive oxygen species with diminished neutralization & inflammation critically adds to atherosclerosis and also proceed to other cardiovascular diseases such as cardiac remodeling and myocardial infarction (MI). In the past few years, researchers revealed multiple drug targets from animal studies and evaluated them in the therapeutics of cardiac disorders, which offered exciting clues for novel therapeutic strategies. Although, only few newer agents approved clinically and actual approaches for treatment are lagging behind. Several novel drugs found effective for the treatment of hypertension, congestive heart failure, cardiac arrhythmia and angina pectoris. Detailed mechanism of action, basic and clinical pharmacology of all novel drugs has been discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sonja FZ, Iskra AN (2018) Management of measurable variable cardiovascular disease' risk factors. Curr Cardiol Rev 14:153–163

    Google Scholar 

  2. Kralj V, Brkic BI (2013) Morbidity and mortality from cardiovascular diseases. Cardiol Croat 8:373–378

    Google Scholar 

  3. Gagan DF, Manasa KN (2019) Brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des 25:38

    Google Scholar 

  4. European Association for Cardiovascular Prevention & Rehabilitation, Reiner Z, Catapano AL, De Backer G, Graham I, Taskinen MR, Wiklund O, Agewall S, Alegria E, Chapman MJ, Durrington P, Erdine S, Halcox J, Hobbs R, Kjekshus J, Filardi PP, Riccardi G, Storey RF, Wood D (2011) ESC Committee for Practice Guidelines (CPG) 2008-2010 and 2010-2012 Committees. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32(14):1769–1818

    Google Scholar 

  5. Olvera LE, Ballard BD, Jan A (2020) Cardiovascular disease. In: Stat Pearls. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK535419/. Accessed 29 May 2020

  6. Benjamin EJ, Virani SS, Callaway CW et al (2018) American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2018 Update: a Report From the American Heart Association. Circulation 137(12):e67–e492

    PubMed  Google Scholar 

  7. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364(9438):937–952

    PubMed  Google Scholar 

  8. Fox CS, Coady S, Sorlie PD, Levy D, Meigs JB, D'Agostino RB, Wilson PW, Savage PJ (2004) Trends in cardiovascular complications of diabetes. JAMA 292(20):2495–2499

    CAS  PubMed  Google Scholar 

  9. Dunbar SB, Khavjou OA, Bakas T, Hunt G, Kirch RA, Leib AR, Morrison RS, Poehler DC, Roger VL, Whitsel LP (2018) American Heart Association: projected Costs of Informal Caregiving for Cardiovascular Disease: 2015 to 2035: a policy statement from the American Heart Association. Circulation 137(19):e558–e577

    PubMed  Google Scholar 

  10. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347):317–325

    CAS  PubMed  Google Scholar 

  11. Davies MJ, Woolf N, Rowles PM, Pepper J (1988) Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. Br Heart J 60(6):459–464

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M et al (2010) American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215

    PubMed  Google Scholar 

  13. Qadeer A, Alison MT, John G, Richard A, William RS et al (2014) The ATP-sensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major role in blood pressure control. Hypertension 64:523–529

    Google Scholar 

  14. Zhi YP, Jing HH, Wen YC, Chao LL, Yan FZ, Hai W (2010) Targeting hypertension with a new adenosine triphosphate-sensitive potassium channel opener iptakalim. J Cardiovasc Pharmacol 56(3):215–228

    Google Scholar 

  15. Priviero FB, Webb RC (2010) Heme- dependent and independent soluble guanylate cyclase activators and vasodilation. J Cardiovasc Pharmacol 56(3):229–233

    CAS  PubMed  PubMed Central  Google Scholar 

  16. George WB (2010) Novel drugs targeting hypertension revisited. J Cardiovasc Pharmacol 56(3):213–214

    Google Scholar 

  17. Lee CR, Imig JD, Edin ML, Foley J et al (2010) Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. FASEB J 24(10):3770–3781

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris TR, Li N, Chiamvimonvat N, Hammock BD (2008) The potential of soluble epoxide hydrolase inhibition in the treatment of cardiac hypertrophy. Congest Heart Fail 14(4):219–224

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Honetschlägerová Z, Sporková A, Kopkan L et al (2011) Inhibition of soluble epoxide hydrolase improves the impaired pressure-natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J Hypertens 29(8):1590–1601. https://doi.org/10.1097/HJH.0b013e328349062f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Certíková CV, Walkowska A, Kompanowska JE, Sadowski J (2010) Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats. Clin Sci (Lond) 118(10):617–632

    Google Scholar 

  21. Hamzaoui M, Guerrot D, Djerada Z, Duflot T, Richard V, Bellien J (2018) Cardiovascular consequences of chronic kidney disease, impact of modulation of epoxyeicosatrienoic acids. Ann Cardiol Angeiol (Paris) 67(3):141–148. https://doi.org/10.1016/j.ancard.2018.04.018

    Article  CAS  Google Scholar 

  22. Olearczyk J, Gao S, Eybye M, Yendluri S et al (2014) Targeting of hepatic angiotensinogen using chemically modified siRNAs results in significant and sustained blood pressure lowering in a rat model of hypertension. Hypertens Res 37(5):405–412

    CAS  PubMed  Google Scholar 

  23. Steckelings UM, Kaschina E, Unger T (2005) The AT2 receptor—a matter of love and hate. Peptides 26:1401–1409

    CAS  PubMed  Google Scholar 

  24. Azegami T, Itoh H (2019) Vaccine development against the renin-angiotensin system for the treatment of hypertension. Int J Hypertens. https://doi.org/10.1155/2019/9218531

    Article  PubMed  PubMed Central  Google Scholar 

  25. Halleck F, Schröder K, Holleck-Weithmann S, Kossmehl P, Kreutz R, Rothermund L (2015) Cardiorenal protection in experimental hypertension with renal failure: comparison between vasopeptidase inhibition and angiotensin receptor blockade. Clin Exp Hypertens 37(1):26–32. https://doi.org/10.3109/10641963.2014.897718

    Article  CAS  PubMed  Google Scholar 

  26. Milan H, Ferro A (2014) Aldosterone synthase inhibitors in hypertension: current status and future possibilities. J R Soc Med Cardiovasc Dis. https://doi.org/10.1177/2048004014522440

    Article  Google Scholar 

  27. Akbari H, Asadikaram G, Vakili S, Masoumi M (2019) Atorvastatin and losartan may upregulate renalase activity in hypertension but not coronary artery diseases: the role of gene polymorphism. J Cell Biochem 120(6):9159–9171. https://doi.org/10.1002/jcb.28191

    Article  CAS  PubMed  Google Scholar 

  28. Martynowicz H, Wieckiewicz M, Poreba R et al (2019) The relationship between sleep bruxism intensity and renalase concentration-an enzyme involved in hypertension development. J Clin Med 9(1):16. https://doi.org/10.3390/jcm9010016

    Article  CAS  PubMed Central  Google Scholar 

  29. Galiè N, Barberà JA, Frost AE et al (2015) Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med 373(9):834–844. https://doi.org/10.1056/NEJMoa1413687

    Article  CAS  PubMed  Google Scholar 

  30. Sastry BK (2006) Pharmacologic treatment for pulmonary arterial hypertension. Curr Opin Cardiol 21:561–568

    CAS  PubMed  Google Scholar 

  31. Bhatt DL, Kandzari DE, O’Neill WW et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370:1393–1401. https://doi.org/10.1056/NEJMoa1402670

    Article  CAS  PubMed  Google Scholar 

  32. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC Committee for Practice Guidelines. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14(8):803–869

    CAS  PubMed  Google Scholar 

  33. Savarese G, Lars HL (2017) Global public health burden of heart failure. Card Fail Rev 3(1):7–11

    PubMed  PubMed Central  Google Scholar 

  34. Mozaffarian D, Benjamin EJ, Go AS et al (2016) American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2016 Update: a report from the American Heart Association. Circulation 133:e38–e360. https://doi.org/10.1161/CIR.0000000000000350

    Article  PubMed  Google Scholar 

  35. Kwadwo OB, Isaac KO, Kwame OB, Daniel DR, Amudha K (2016) Review of novel therapeutic targets for improving heart failure treatment based on experimental and clinical studies. Ther Clin Risk Manag 12:887–906

    Google Scholar 

  36. Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451(7181):919–928

    CAS  PubMed  Google Scholar 

  37. Tilemann L, Ishikawa K, Weber T, Hajjar RJ (2012) Gene therapy for heart failure. Circ Res 110(5):777–793

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Santulli G, Nakashima R, Yuan Q, Marks AR (2017) Intracellular calcium release channels: an update. J Physiol 595(10):3041–3051. https://doi.org/10.1113/JP272781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shan J, Betzenhauser MJ, Kushnir A et al (2010) Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. J Clin Invest 120(12):4375–4387

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Banke A, Fosbøl EL, Ewertz M et al (2019) Long-term risk of heart failure in breast cancer patients after adjuvant chemotherapy with or without trastuzumab. JACC Heart Fail 7(3):217–224. https://doi.org/10.1016/j.jchf.2018.09.001

    Article  PubMed  Google Scholar 

  41. Yasui T, Masaki T, Arita Y et al (2016) Molecular characterization of striated muscle-specific Gab1 isoform as a critical signal transducer for neuregulin-1/ErbB signaling in cardiomyocytes. PLoS ONE 11(11):e0166710. https://doi.org/10.1371/journal.pone.0166710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krum H (2008) Role of renin in heart failure and therapeutic potential of direct renin inhibition. J Renin Angiotensin Aldosterone Syst 9(3):177–180

    PubMed  Google Scholar 

  43. Nguyen G (2007) The (pro)renin receptor: pathophysiological roles in cardiovascular and renal pathology. Curr Opin Nephrol Hypertens 16(2):129–133

    CAS  PubMed  Google Scholar 

  44. Bernardo WM, Moreira FT (2012) Does nesiritide reduce mortality and readmission in decompensated heart failure? Rev Assoc Méd Bras 58(2):133–134

    PubMed  Google Scholar 

  45. O’Connor CM, Starling RC, Hernandez AF et al (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365(1):32–43

    PubMed  Google Scholar 

  46. Miyauchi T, Sakai S (2019) Endothelin and the heart in health and diseases. Peptides 111:77–88. https://doi.org/10.1016/j.peptides.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  47. Barton M, Yanagisawa M (2019) Endothelin: 30 years from discovery to therapy. Hypertension 74(6):1232–1265

    CAS  PubMed  Google Scholar 

  48. Vardeny O, Miller R, Solomon SD (2014) Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail 2(6):663–670. https://doi.org/10.1016/j.jchf.2014.09.001

    Article  PubMed  Google Scholar 

  49. Hegde LG, Yu C, Renner T et al (2011) Concomitant angiotensin AT1 receptor antagonism and neprilysin inhibition produces omapatrilat-like antihypertensive effects without promoting tracheal plasma extravasation in the rat. J Cardiovasc Pharmacol 57(4):495–504

    CAS  PubMed  Google Scholar 

  50. Rose RA (2010) CD-NP, a chimeric natriuretic peptide for the treatment of heart failure. Curr Opin Investig Drugs 11(3):349–356

    CAS  PubMed  Google Scholar 

  51. Mondritzki T, Kolkhof P, Sabbah HN et al (2011) Differentiation of arginine vasopressin antagonistic effects by selective V2 versus dual V2/V1a receptor blockade in a preclinical heart failure model. Am J Ther 18(1):31–37

    PubMed  Google Scholar 

  52. Torp-Pedersen C, Kober L, Carlsen JE et al (2008) A randomised trial of a pre-synaptic stimulator of DA2-dopaminergic and alpha2-adrenergic receptors on morbidity and mortality in patients with heart failure. Eur J Heart Fail 10(1):89–95

    CAS  PubMed  Google Scholar 

  53. Selim AM, Sarswat N, Kelesidis I, Iqbal M, Chandra R, Zolty R (2017) Plasma serotonin in heart failure: possible marker and potential treatment target. Heart Lung Circ 26(5):442–449. https://doi.org/10.1016/j.hlc.2016.08.003

    Article  PubMed  Google Scholar 

  54. Meyers MJ, Arhancet GB, Hockerman SL et al (2010) Discovery of (3S,3aR)-2-(3-chloro-4-cyanophenyl)-3-cyclopentyl-3,3a,4,5-tetrahydro-2H-benzo[g]indazole-7-carboxylic Acid (PF-3882845), an orally efficacious mineralocorticoid receptor (MR) antagonist for hypertension and nephropathy. J Med Chem 53(16):5979–6002

    CAS  PubMed  Google Scholar 

  55. Pitt B, Kober L, Ponikowski P et al (2013) Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J 34(31):2453–2463

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bonsu KO, Kadirvelu A, Reidpath DD (2013) Statins in heart failure: do we need another trial? Vasc Health Risk Manag 9:303–319

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hofmann U, Frantz S (2013) How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol 108(4):356

    PubMed  PubMed Central  Google Scholar 

  58. Palaniswamy C, Mellana WM, Selvaraj DR, Mohan D (2011) Metabolic modulation: a new therapeutic target in treatment of heart failure. Am J Ther 18(6):e197–e201

    PubMed  Google Scholar 

  59. Lakshmi SV, Padmaja G, Kuppusamy P, Kutala VK (2009) Oxidative stress in cardiovascular disease. Indian J Biochem Biophys 46(6):421–440

    CAS  PubMed  Google Scholar 

  60. Tanno S, Yamamoto K, Kurata Y et al (2018) Protective effects of topiroxostat on an ischemia-reperfusion model of rat hearts. Circ J 82(4):1101–1111. https://doi.org/10.1253/circj.CJ-17-1049

    Article  CAS  PubMed  Google Scholar 

  61. Go AS, Lee WY, Yang J, Lo JC, Gurwitz JH (2006) Statin therapy and risks for death and hospitalization in chronic heart failure. JAMA 296:2105–2111

    CAS  PubMed  Google Scholar 

  62. Kazmi I, Afzal A, Anwar F (2014) Extraction and isolation of novel cardioprotective ursolic acid stearoyl glucoside from the leaves of Lantana camara Linn. Official Journals of the Patent Office, Application No.273/DEL/2013 A, Isssue no. 34/2014, p 32197

  63. Al-Harbi IF, NO, et al (2017) Rutin attenuates carfilzomib-induced cardiotoxicity through inhibition of NF-κB, hypertrophic gene expression and oxidative stress. Cardiovasc Toxicol 17:58–66. https://doi.org/10.1007/s12012-015-9356-5

    Article  CAS  PubMed  Google Scholar 

  64. Czabanski R, Horoba K, Wrobel J, Matonia A, Martinek R, Kupka T et al (2020) Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine. Sensors (Basel) 20(3):765

    Google Scholar 

  65. Yu Y, Wang Q, Sun J, Zhao J, Chen S, Li Y (2020) Fast growing angiosarcoma of the right atrium after radiofrequency catheter ablation: a missed diagnosis or misdiagnosis case report. BMC Cancer 20(1):13

    PubMed  PubMed Central  Google Scholar 

  66. Shao C, Wang J, Tian J, Tang YD (2020) Coronary artery disease: from mechanism to clinical practice. Adv Exp Med Biol 1177:1–36

    CAS  PubMed  Google Scholar 

  67. Chan YH, Lee HF, Chao TF, Wu CT, Chang SH, Yeh YH, See LC, Kuo CT, Chu PH, Wang CL, Lip GYH (2019) Real-world comparisons of direct oral anticoagulants for stroke prevention in Asian patients with non-valvular atrial fibrillation: a systematic review and meta-analysis. Cardiovasc Drugs Ther 33(6):701–710

    CAS  PubMed  Google Scholar 

  68. Stępień-Wojno M, Ponińska J, Biernacka EK, Foss-Nieradko B, Chwyczko T, Syska P, Płoski R, Bilińska ZT (2020) A recurrent exertional syncope and sudden cardiac arrest in a young athlete with known pathogenic p.Arg420Gln variant in the RYR2 gene. Diagnostics (Basel) 10(7):E435

    Google Scholar 

  69. Van HA, Nasrallah H, Lau DH, Kuiper M, Verheule S, Schotten U (2018) Vernakalant does not alter early repolarization or contractility in normal and electrically remodelled atria. Europace 20(1):140–148

    Google Scholar 

  70. Ritchie LA, Qin S, Penson PE, Henney NC, Lip GY (2020) Vernakalant hydrochloride for the treatment of atrial fibrillation: evaluation of its place in clinical practice. Future Cardiol. https://doi.org/10.2217/fca-2020-0039

    Article  PubMed  Google Scholar 

  71. Ma W, Guo X, Wang Q, Sun G, Wang J (2020) Systematic review and meta-analysis appraising efficacy and safety of vernakalant for cardioversion of recent-onset atrial fibrillation. J Cardiovasc Pharmacol 76(1):32–41

    CAS  PubMed  Google Scholar 

  72. Akel T, Lafferty J (2018) Efficacy and safety of intravenous vernakalant for the rapid conversion of recent-onset atrial fibrillation: a meta-analysis. Ann Noninvasive Electrocardiol 23(3):e12508

    PubMed  Google Scholar 

  73. Kanvatirth P, Jeeves RE, Bacon J, Besra GS, Alderwick LJ (2019) Utilisation of the prestwick chemical library to identify drugs that inhibit the growth of mycobacteria. PLoS ONE 14(3):e0213713

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Acerda AE, Kuryshev YA, Yan GX, Waldo AL, Brown AM (2010) Vanoxerine: cellular mechanism of a new antiarrhythmic. J Cardiovasc Electrophysiol 21(3):301–310

    Google Scholar 

  75. Zheng C, Chen G, Tan Y, Zeng W, Peng Q, Wang J, Cheng C, Yang X, Nie S, Xu Y, Zhang Z, Papa SM, Ye K, Cao X (2018) TRH analog, taltirelin improves motor function of hemi-PD rats without inducing dyskinesia via sustained dopamine stimulating effect. Front Cell Neurosci 12:417

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Storey KM, Wang J, Garberich RF, Bennett NM, Traverse JH, Arndt TL, Schmidt CW, Henry TD (2020) Long-term (3 years) outcomes of ranolazine therapy for refractory angina pectoris (from the Ranolazine Refractory Registry). Am J Cardiol 129:1–4

    CAS  PubMed  Google Scholar 

  77. Miranda VM, Beserra SS, Campos DR (2020) Inotropic and antiarrhythmic transmural actions of ranolazine in a cellular model of type 3 long QT syndrome. Arq Bras Cardiol 114(4):732–735

    PubMed  Google Scholar 

  78. Ferrantini C, Pioner JM, Mazzoni L, Gentile F et al (2018) Late sodium current inhibitors to treat exercise-induced obstruction in hypertrophic cardiomyopathy: an in vitro study in human myocardium. Br J Pharmacol 175(13):2635–2652

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhabyeyev P, McLean B, Chen X, Vanhaesebroeck B, Oudit GY (2019) Inhibition of PI3Kinase-α is pro-arrhythmic and associated with enhanced late Na+ current, contractility, and Ca2+ release in murine hearts. J Mol Cell Cardiol 132:98–109

    PubMed  Google Scholar 

  80. Reed M, Kerndt CC, Nicolas D (2020) Ranolazine. In: StatPearls, Treasure Island (FL): StatPearls Publishing; PMID: 29939605

  81. Quintana-Villamandos B, González MDC, Delgado-Martos MJ, Gutiérrez-Arzapalo PY, Böger RH, Lüneburg N, Muñoz D, Delgado-Baeza E (2019) The protective effect of dronedarone on the structure and mechanical properties of the aorta in hypertensive rats by decreasing the concentration of symmetric dimethylarginine (SDMA). PLoS ONE 14(5):e0216820

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shenasa M, Assadi H, Heidary S, Shenasa H (2016) Ranolazine: electrophysiologic effect, efficacy, and safety in patients with cardiac arrhythmias. Card Electrophysiol Clin 8(2):467–479

    PubMed  Google Scholar 

  83. Khan MH, Rochlani Y, Aronow WS (2017) Efficacy and safety of dronedarone in the treatment of patients with atrial fibrillation. Expert Opin Drug Saf 16(12):1407–1412

    CAS  PubMed  Google Scholar 

  84. Naccarelli GV, Wolbrette DL, Levin V, Samii S, Banchs JE, Penny-Peterson E, Gonzalez MD (2011) Safety and efficacy of dronedarone in the treatment of atrial fibrillation/flutter. Clin Med Insights Cardiol 5:103–119

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Elliott MJ, Jerzak KJ, Cockburn JG, Safikhani Z, Gwynne WD, Hassell JA, Bane A, Silvester J, Thu KL, Haibe-Kains B, Mak TW, Cescon DW (2018) The antiarrhythmic drug, dronedarone, demonstrates cytotoxic effects in breast cancer independent of thyroid hormone receptor alpha 1 (THRα1) antagonism. Sci Rep 8(1):16562

    PubMed  PubMed Central  Google Scholar 

  86. Sonkar SK, Kumar A (2020) Coronary cameral fistula - a rare cause of angina pectoris in a young patient. J Assoc Phys India 68(6):64–65

    Google Scholar 

  87. Baggiano A, Guglielmo M, Muscogiuri G, Guaricci AI, Del Torto A, Pontone G (2020) (Epicardial and microvascular) angina or atypical chest pain: differential diagnoses with cardiovascular magnetic resonance. Eur Heart J Suppl 22(Suppl E):E116–E120

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Levy BI, Heusch G, Camici PG (2019) The many faces of myocardial ischaemia and angina. Cardiovasc Res 115(10):1460–1470

    CAS  PubMed  Google Scholar 

  89. Reed M, Kerndt CC, Nicolas D (2020) Ranolazine. 2020 May 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan–. PMID: 29939605

  90. Heggermont WA, Papageorgiou AP, Heymans S, van Bilsen M (2016) Metabolic support for the heart: complementary therapy for heart failure? Eur J Heart Fail 18(12):1420–1429

    PubMed  Google Scholar 

  91. Schwemer TF, Radziwolek L, Deutscher N, Diermann N, Sehner S, Blankenberg S, Friedrich FW (2019) Effect of ranolazine on ischemic myocardium IN patients with acute cardiac ischemia (RIMINI-Trial): a randomized controlled pilot trial. J Cardiovasc Pharmacol Ther 24(1):62–69

    CAS  PubMed  Google Scholar 

  92. Abdelsayed M, Ruprai M, Ruben PC (2018) The efficacy of Ranolazine on E1784K is altered by temperature and calcium. Sci Rep 8(1):3643

    PubMed  PubMed Central  Google Scholar 

  93. Belenkov YN, Ilgisonis IS, Naymann YI, Privalova EA, Zhito AV (2019) The use of selective inhibitor of If-channels ivabradine in patients with ischemic heart disease, heart failure with high heart rate. Kardiologiia 59(10):60–65

    PubMed  Google Scholar 

  94. Ferrari R, Pavasini R, Camici PG, Crea F, Danchin N, Pinto F, Manolis A, Marzilli M, Rosano GMC, Lopez-Sendon J, Fox K (2019) Anti-anginal drugs-beliefs and evidence: systematic review covering 50 years of medical treatment. Eur Heart J 40(2):190–194

    CAS  PubMed  Google Scholar 

  95. Tahir F, Bin Arif T, Majid Z, Ahmed J, Khalid M (2020) Ivabradine in postural orthostatic tachycardia syndrome: a review of the literature. Cureus 12(4):e7868

    PubMed  PubMed Central  Google Scholar 

  96. Koroma TR, Samura SK, Cheng Y, Tang M (2020) Effect of ivabradine on left ventricular diastolic function, exercise tolerance and quality of life in patients with heart failure: a systemic review and meta-analysis of randomized controlled trials. Cardiol Res 11(1):40–49

    PubMed  PubMed Central  Google Scholar 

  97. Marciniak TA, Atar D, Serebruany V (2020) Does ivabradine decrease cardiovascular deaths in heart failure patients? Am J Med 133(3):347–351

    CAS  PubMed  Google Scholar 

  98. Ahmed LA (2019) Nicorandil: a drug with ongoing benefits and different mechanisms in various diseased conditions. Indian J Pharmacol 51(5):296–301

    CAS  PubMed  PubMed Central  Google Scholar 

  99. National Center for Biotechnology Information. PubChem Database (2020) Nicorandil, CID=47528, https://pubchem.ncbi.nlm.nih.gov/compound/Nicorandil. Accessed 6 July 2020

  100. Marinko M, Novakovic A, Nenezic D, Stojanovic I, Milojevic P, Jovic M, Ugresic N, Kanjuh V, Yang Q, He GW (2015) Nicorandil directly and cyclic GMP-dependently opens K+ channels in human bypass grafts. J Pharmacol Sci 128(2):59–64

    CAS  PubMed  Google Scholar 

  101. Ooshiro D, Yamaguchi S, Kakazu M, Arasaki O (2017) Effectiveness of continuous low-dose fasudil on refractory coronary vasospasm subsequent to cardiopulmonary arrest. Clin Case Rep 5(8):1207–1209

    PubMed  PubMed Central  Google Scholar 

  102. Yang YJ, Bu LL, Shen C, Ge JJ, He SJ, Yu HL, Tang YL, Jue Z, Sun YM, Yu WB, Zuo CT, Wu JJ, Wang J, Liu FT (2020) Fasudil promotes α-synuclein clearance in an AAV-mediated α-synuclein rat model of Parkinson's disease by autophagy activation. J Parkinsons Dis 10(3):969–979

    CAS  PubMed  Google Scholar 

  103. Busti I, Allegra M, Spalletti C, Panzi C, Restani L, Billuart P, Caleo M (2020) ROCK/PKA inhibition rescues hippocampal hyperexcitability and GABAergic neuron alterations in a oligophrenin-1 knock-out mouse model of X-linked intellectual disability. J Neurosci 40(13):2776–2788. https://doi.org/10.1523/JNEUROSCI.0462-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yan Y, Xiang C, Yang Z, Miao D, Zhang D (2020) Rho kinase inhibition by fasudil attenuates adriamycin-induced chronic heart injury. Cardiovasc Toxicol 20(4):351–360

    CAS  PubMed  Google Scholar 

  105. Panta CR, Ruisanchez É, Móré D, Dancs PT, Balogh A, Fülöp Á, Kerék M, Proia RL, Offermanns S, Tigyi GJ, Benyó Z (2019) Sphingosine-1-phosphate enhances α1-adrenergic vasoconstriction via S1P2-G12/13-ROCK mediated signaling. Int J Mol Sci 20(24):6361

    CAS  PubMed Central  Google Scholar 

  106. Suda A, Takahashi J, Hao K, Kikuchi Y, Shindo T, Ikeda S, Sato K, Sugisawa J, Matsumoto Y, Miyata S, Sakata Y, Shimokawa H (2019) Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease. J Am Coll Cardiol 74(19):2350–2360

    CAS  PubMed  Google Scholar 

  107. Yuan R, Xin Q, Shi W, Liu W, Lee SM, Hoi P, Li L, Zhao J, Cong W, Chen K (2018) Vascular endothelial growth factor gene transfer therapy for coronary artery disease: a systematic review and meta-analysis. Cardiovasc Ther 36(5):e12461

    PubMed  Google Scholar 

  108. Sunaga H, Koitabashi N, Iso T, Matsui H, Obokata M, Kawakami R, Murakami M, Yokoyama T, Kurabayashi M (2019) Activation of cardiac AMPK-FGF21 feed-forward loop in acute myocardial infarction: role of adrenergic overdrive and lipolysis byproducts. Sci Rep 9(1):11841

    PubMed  PubMed Central  Google Scholar 

  109. Huang A, Qi X, Cui Y, Wu Y, Zhou S, Zhang M (2020) Serum VEGF: diagnostic value of acute coronary syndrome from stable angina pectoris and prognostic value of coronary artery disease. Cardiol Res Pract 2020:6786302

    PubMed  PubMed Central  Google Scholar 

  110. Chen SM, Li D, Xing X, Li ZP (2020) Higher serum angiopoietin 2 levels are independently associated with coronary microvascular dysfunction in patients with angina in the absence of obstructive coronary artery disease. Chin Med J (Engl). https://doi.org/10.1097/CM9.0000000000000812

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Afzal.

Ethics declarations

Conflict of interest

The Author of this manuscript has no conflict of interest and responsible for all the writing content of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, M. Recent updates on novel therapeutic targets of cardiovascular diseases. Mol Cell Biochem 476, 145–155 (2021). https://doi.org/10.1007/s11010-020-03891-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03891-8

Keywords

Navigation