Skip to main content

Advertisement

Log in

Paeonol suppresses the effect of ox-LDL on mice vascular endothelial cells by regulating miR-338-3p/TET2 axis in atherosclerosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Atherosclerosis is the common vascular disease. Vascular smooth muscle cell proliferation and vascular endothelial cell (VEC) dysfunction are involved in the causes of atherosclerosis. And oxidized low-density lipoprotein (ox-LDL)-induced vascular endothelial cells (VECs) are suitable models for studying atherosclerosis development. Paeonol was reported to repress ox-LDL-induced VEC progression. However, its detailed mechanism was not fully reported. MicroRNAs (miRNAs) acted as regulators in multiple diseases. Previous findings found that microRNA-338-3p (miR-338-3p) was overexpressed in Atherosclerosis process. However, the function and underlying mechanism of miR-338-3p in ox-LDL-treated VECs needed to be elucidated. The purpose of this research was to reveal the role of miR-338-3p in paeonol-regulated ox-LDL-induced VEC progression. Cell counting kit-8 (CCK-8) and flow cytometry were employed to determine cell viability and apoptosis, respectively. Moreover, the levels of IL-6 and IL-1β were analyzed using enzyme-linked immunosorbent assay, as well as the contents of reactive oxygen species, lactate dehydrogenase, and malonic dialdehyde were investigated using related kits. Furthermore, quantitative real-time polymerase chain reaction was carried out to determine the expression of miR-338-3p. Western blot assay was conducted to detect the level of tet methylcytosine dioxygenase 2 (TET2). Besides, the interaction between miR-338-3p and TET2 was predicted by DIANA, and then confirmed by the dual-luciferase reporter assay and RNA immunoprecipitation assay. Ox-LDL repressed mice VEC viability, and promoted apoptosis, inflammatory response, and oxidative injury. Paeonol inhibited the effect of ox-LDL on the growth of the VECs. Furthermore, paeonol regulated VEC development via downregulating miR-338-3p expression. Interestingly, miR-338-3p targeted TET2 and inhibited TET2 expression. MiR-338-3p modulated ox-LDL-treated VEC growth through suppressing TET2 expression. We demonstrated that paeonol attenuated the effect of ox-LDL on the development of mice VECs via modulating miR-338-3p/TET2 axis, providing a theoretical basis for the treatment of AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AS:

Atherosclerosis

ox-LDL:

Oxidized low-density lipoprotein

VECs:

Vascular endothelial cells

TET2:

Tet methylcytosine dioxygenase 2

CCK-8:

Cell counting kit-8

PI:

Propidium iodide

V-FITC:

V-fluorescein isothiocyanate

ELISA:

Enzyme-linked immunosorbent assay

MDA:

Malonic dialdehyde

LDH:

Lactate dehydrogenase

ROS:

Reactive oxygen species

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

References

  1. Comsa HI, Zdrenghea D, Man SC, Pop D (2018) The role of novel atherosclerosis markers in peripheral artery disease: is there a gender difference? Cardiovasc J Afr 29:322–330. https://doi.org/10.5830/cvja-2018-023

    Article  Google Scholar 

  2. Forstermann U, Xia N, Li H (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120:713–735. https://doi.org/10.1161/circresaha.116.309326

    Article  Google Scholar 

  3. Bruyndonckx L, Hoymans VY, Van Craenenbroeck AH, Vissers DK, Vrints CJ, Ramet J, Conraads VM (2013) Assessment of endothelial dysfunction in childhood obesity and clinical use. Oxid Med Cell Longev 2013:174782. https://doi.org/10.1155/2013/174782

    Article  Google Scholar 

  4. Chou TC (2003) Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. Br J Pharmacol 139:1146–1152. https://doi.org/10.1038/sj.bjp.0705360

    Article  CAS  Google Scholar 

  5. Fu PK, Wu CL, Tsai TH, Hsieh CL (2012) Anti-inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats. Evid Based Complement Alternat Med 2012:837513. https://doi.org/10.1155/2012/837513

    Article  Google Scholar 

  6. Zhou Z, Subramanian P, Sevilmis G, Globke B, Soehnlein O, Karshovska E, Megens R, Heyll K, Chun J, Saulnier-Blache JS, Reinholz M, van Zandvoort M, Weber C, Schober A (2011) Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing CXCL1 from the endothelium. Cell Metab 13:592–600. https://doi.org/10.1016/j.cmet.2011.02.016

    Article  CAS  Google Scholar 

  7. Yuan X, Chen J, Dai M (2016) Paeonol promotes microRNA-126 expression to inhibit monocyte adhesion to ox-LDL-injured vascular endothelial cells and block the activation of the PI3K/Akt/NF-kappaB pathway. Int J Mol Med 38:1871–1878. https://doi.org/10.3892/ijmm.2016.2778

    Article  CAS  Google Scholar 

  8. Trionfini P, Benigni A (2017) MicroRNAs as master regulators of glomerular function in health and disease. J Am Soc Nephrol 28:1686–1696. https://doi.org/10.1681/asn.2016101117

    Article  CAS  Google Scholar 

  9. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469. https://doi.org/10.1016/j.molmed.2014.06.005

    Article  CAS  Google Scholar 

  10. Xiao R, Li C, Chai B (2015) miRNA-144 suppresses proliferation and migration of colorectal cancer cells through GSPT1. Biomed Pharmacother 74:138–144. https://doi.org/10.1016/j.biopha.2015.08.006

    Article  CAS  Google Scholar 

  11. Ganesan S, Palani HK, Lakshmanan V, Balasundaram N, Alex AA, David S, Venkatraman A, Korula A, George B, Balasubramanian P, Palakodeti D, Vyas N (2019) Stromal cells downregulate miR-23a-5p to activate protective autophagy in acute myeloid leukemia. Cell Death Dis 10:736. https://doi.org/10.1038/s41419-019-1964-8

    Article  CAS  Google Scholar 

  12. Zhang X, Wang C, Li H, Niu X, Liu X, Pei D, Guo X, Xu X, Li Y (2017) miR-338-3p inhibits the invasion of renal cell carcinoma by downregulation of ALK5. Oncotarget 8:64106–64113

    Article  Google Scholar 

  13. Zhang C, Li H, Wang J, Zhang J, Hou X (2019) MicroRNA-338-3p suppresses cell proliferation, migration and invasion in human malignant melanoma by targeting MACC1. Exp Ther Med 18:997–1004. https://doi.org/10.3892/etm.2019.7644

    Article  CAS  Google Scholar 

  14. Zhang R, Shi H, Ren F, Liu Z, Ji P, Zhang W, Wang W (2019) Down-regulation of miR-338-3p and up-regulation of MACC1 indicated poor prognosis of epithelial ovarian cancer patients. J Cancer 10:1385–1392. https://doi.org/10.7150/jca.29502

    Article  CAS  Google Scholar 

  15. Zhang L, Yan R, Zhang SN, Zhang HZ, Ruan XJ, Cao Z, Gu XZ (2019) MicroRNA-338-3p inhibits the progression of bladder cancer through regulating ETS1 expression. Eur Rev Med Pharmacol Sci 23:1986–1995

    CAS  Google Scholar 

  16. Yin J, Hou X, Yang S (2019) microRNA-338-3p promotes ox-LDL-induced endothelial cell injury through targeting BAMBI and activating TGF-beta/Smad pathway. J Cell Physiol 234:11577–11586. https://doi.org/10.1002/jcp.27814

    Article  CAS  Google Scholar 

  17. Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-Dembinsky A, Rubertsson S, Nellgard B, Blennow K, Zetterberg H, Spalding K, Haller MJ, Wasserfall CH, Schatz DA, Greenbaum CJ, Dorrell C, Grompe M, Zick A, Hubert A, Maoz M, Fendrich V, Bartsch DK, Golan T, Ben Sasson SA, Zamir G, Razin A, Cedar H, Shapiro AM, Glaser B, Shemer R, Dor Y (2016) Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci U S A 113:E1826–1834. https://doi.org/10.1073/pnas.1519286113

    Article  CAS  Google Scholar 

  18. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843. https://doi.org/10.1038/nature09586

    Article  CAS  Google Scholar 

  19. Peng J, Yang Q, Li AF, Li RQ, Wang Z, Liu LS, Ren Z, Zheng XL, Tang XQ, Li GH, Tang ZH, Jiang ZS, Wei DH (2016) Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in ApoE−/− mice. Oncotarget 7:76423–76436

    Article  Google Scholar 

  20. Zhaolin Z, Jiaojiao C, Peng W, Yami L, Tingting Z, Jun T, Shiyuan W, Jinyan X, Dangheng W, Zhisheng J, Zuo W (2019) OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway. J Cell Physiol 234:7475–7491. https://doi.org/10.1002/jcp.27509

    Article  CAS  Google Scholar 

  21. Chen L, Qiu J, Yang C, Yang X, Chen X, Jiang J, Luo X (2009) Identification of a novel estrogen receptor beta1 binding partner, inhibitor of differentiation-1, and role of ERbeta1 in human breast cancer cells. Cancer Lett 278:210–219. https://doi.org/10.1016/j.canlet.2009.01.008

    Article  CAS  Google Scholar 

  22. Adawi M, Pastukh N, Saaida G, Sirchan R, Watad A, Blum A (2019) Inhibition of endothelial progenitor cells may explain the high cardiovascular event rate in patients with rheumatoid arthritis. QJM 112:161. https://doi.org/10.1093/qjmed/hcy204

    Article  CAS  Google Scholar 

  23. Wu K, Zhu C, Yao Y, Wang X, Song J, Zhai J (2016) MicroRNA-155-enhanced autophagy in human gastric epithelial cell in response to Helicobacter pylori. Saudi J Gastroenterol 22:30–36. https://doi.org/10.4103/1319-3767.173756

    Article  CAS  Google Scholar 

  24. Li C, Yang L, Wu H, Dai M (2018) Paeonol inhibits oxidized low-density lipoprotein-induced vascular endothelial cells autophagy by upregulating the expression of miRNA-30a. Front Pharmacol 9:95. https://doi.org/10.3389/fphar.2018.00095

    Article  CAS  Google Scholar 

  25. Liu YR, Chen JJ, Dai M (2014) Paeonol protects rat vascular endothelial cells from ox-LDL-induced injury in vitro via downregulating microRNA-21 expression and TNF-alpha release. Acta Pharmacol Sin 35:483–488. https://doi.org/10.1038/aps.2013.190

    Article  CAS  Google Scholar 

  26. Liu Y, Li C, Wu H, Xie X, Sun Y, Dai M (2018) Paeonol attenuated inflammatory response of endothelial cells via stimulating monocytes-derived exosomal MicroRNA-223. Front Pharmacol 9:1105. https://doi.org/10.3389/fphar.2018.01105

    Article  CAS  Google Scholar 

  27. Horng CT, Shieh PC, Tan TW, Yang WH, Tang CH (2014) Paeonol suppresses chondrosarcoma metastasis through up-regulation of miR-141 by modulating PKCdelta and c-Src signaling pathway. Int J Mol Sci 15:11760–11772. https://doi.org/10.3390/ijms150711760

    Article  CAS  Google Scholar 

  28. Ji D, Hu G, Zhang X, Yu T, Yang J (2019) Long non-coding RNA DSCAM-AS1 accelerates the progression of hepatocellular carcinoma via sponging miR-338-3p. Am J Transl Res 11:4290–4302

    CAS  Google Scholar 

  29. Li M, Ning J, Li Z, Fei Q, Zhao C, Ge Y, Wang L (2019) Long noncoding RNA OIP5-AS1 promotes the progression of oral squamous cell carcinoma via regulating miR-338-3p/NRP1 axis. Biomed Pharmacother 118:109259. https://doi.org/10.1016/j.biopha.2019.109259

    Article  CAS  Google Scholar 

  30. Pham VV, Zhang J, Liu L, Truong B, Xu T, Nguyen TT, Li J, Le TD (2019) Identifying miRNA-mRNA regulatory relationships in breast cancer with invariant causal prediction. BMC Bioinformatics 20:143. https://doi.org/10.1186/s12859-019-2668-x

    Article  Google Scholar 

  31. Urgese G, Paciello G, Acquaviva A, Ficarra E (2016) isomiR-SEA: an RNA-Seq analysis tool for miRNAs/isomiRs expression level profiling and miRNA-mRNA interaction sites evaluation. BMC Bioinformatics 17:148. https://doi.org/10.1186/s12859-016-0958-0

    Article  CAS  Google Scholar 

  32. Zhang Y, Su Y, Zhao Y, Lv G, Luo Y (2017) MicroRNA720 inhibits pancreatic cancer cell proliferation and invasion by directly targeting cyclin D1. Mol Med Rep 16:9256–9262. https://doi.org/10.3892/mmr.2017.7732

    Article  CAS  Google Scholar 

  33. Jiang S, Yan W, Wang SE, Baltimore D (2019) Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proc Natl Acad Sci U S A 116:12416–12421. https://doi.org/10.1073/pnas.1811040116

    Article  CAS  Google Scholar 

  34. Wang Q, Su L (2019) Vpr enhances HIV-1 Env processing and virion infectivity in macrophages by modulating TET2-dependent IFITM3 expression. MBio. https://doi.org/10.1128/mBio.01344-19

    Article  Google Scholar 

  35. Li G, Peng J, Liu Y, Li X, Yang Q, Li Y, Tang Z, Wang Z, Jiang Z, Wei D (2015) Oxidized low-density lipoprotein inhibits THP-1-derived macrophage autophagy via TET2 down-regulation. Lipids 50:177–183. https://doi.org/10.1007/s11745-014-3977-5

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifeng Yan.

Ethics declarations

Conflicts of interest

The authors declare that they have no financial conflicts of interest.

Ethics approval

Written informed consent was approved by Ethics Review Committees of Central China Fuwai Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Yan, R., Chen, X. et al. Paeonol suppresses the effect of ox-LDL on mice vascular endothelial cells by regulating miR-338-3p/TET2 axis in atherosclerosis. Mol Cell Biochem 475, 127–135 (2020). https://doi.org/10.1007/s11010-020-03865-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03865-w

Keywords

Navigation