Skip to main content
Log in

The protective effect of cannabinoid type 2 receptor activation on renal ischemia–reperfusion injury

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Kidney ischemia reperfusion (IR) injury is an important health problem resulting in acute renal failure. After IR, the inflammatory and apoptotic process is triggered. The relation of Cannabinoid type 2 (CB2) receptor with inflammatory and apoptotic process has been determined. The CB2 receptor has been shown to be localized in glomeruli and tubules in human and rat kidney. Activation of CB2 receptor with JWH-133 has been shown to reduce apoptosis and inflammation. In this study, it was investigated whether CB2 activation with selective CB2 receptor agonist JWH-133 was protective against renal IR injury. Male Sprague–Dawley rats were divided into 5 groups (n = 45). Bilateral ischemia was treated to the IR group rat’s kidneys for 45 min and then reperfusion was performed for 24 h. Three different doses of JWH-133 (0.2, 1 and 5 mg/kg) were administered to the treatment groups at the onset of ischemia. The JWH-133 application at three different doses decreased the glomerular and tubular damage. Additionally, in the renal tissue, nuclear factor-κB, tumour necrosis factor alpha, interleukin-1beta, and caspase-3 levels decreased immunohistochemically. Similarly, JWH-133 application decreased the serum tumour necrosis factor alpha, blood urea nitrogen, creatinine, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, Cystatin C, interleukin-18, interleukin-1beta, interleukin-6, and interleukin-10 levels. We found that JWH-133 and CB2 receptor activation had a curative effect against kidney IR damage. JWH-133 may be a new therapeutic agent in preventing kidney IR damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bucuvic EM, Ponce D, Balbi AL (2011) Risk factors for mortality in acute kidney injury. Rev Assoc Med Bras (1992) 57:158–163

    Article  Google Scholar 

  2. Hsu CY, McCulloch CE, Fan D, Ordonez JD, Chertow GM, Go AS (2007) Community-based incidence of acute renal failure. Kidney Int 72:208–212. https://doi.org/10.1038/sj.ki.5002297

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ozer Sehirli A, Sener G, Ercan F (2009) Protective effects of pycnogenol against ischemia reperfusion-induced oxidative renal injury in rats. Ren Fail 31:690–697. https://doi.org/10.3109/08860220903085971

    Article  CAS  PubMed  Google Scholar 

  4. Eraslan E, Tanyeli A, Polat E (2019) 8-Br-cADPR, a TRPM2 ion channel antagonist, inhibits renal ischemia-reperfusion injury. J Cell Physiol 234:4572–4581. https://doi.org/10.1002/jcp.27236

    Article  CAS  PubMed  Google Scholar 

  5. Cakir M, Tekin S, Taslidere A, Cakan P, Duzova H, Gul CC (2018) Protective effect of N-(p-amylcinnamoyl) anthranilic acid, phospholipase A2 enzyme inhibitor, and transient receptor potential melastatin-2 channel blocker against renal ischemia-reperfusion injury. J Cell Biochem. https://doi.org/10.1002/jcb.27664

    Article  PubMed  Google Scholar 

  6. Lawrence T (2009) The nuclear factor NF-kappa B pathway in inflammation. Cold Spring Harb Persp Biol 1:a001651. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  Google Scholar 

  7. Moynagh PN (2005) The NF-kappaB pathway. J Cell Sci 118:4589–4592. https://doi.org/10.1242/jcs.02579

    Article  CAS  PubMed  Google Scholar 

  8. Beker BM, Corleto MG, Fieiras C, Musso CG (2018) Novel acute kidney injury biomarkers: their characteristics, utility and concerns. Int Urol Nephrol 50:705–713. https://doi.org/10.1007/s11255-017-1781-x

    Article  CAS  PubMed  Google Scholar 

  9. Kokkoris S, Pipili C, Grapsa E, Kyprianou T, Nanas S (2013) Novel biomarkers of acute kidney injury in the general adult ICU: a review. Ren Fail 35:579–591. https://doi.org/10.3109/0886022x.2013.773835

    Article  PubMed  Google Scholar 

  10. Teo SH, Endre ZH (2017) Biomarkers in acute kidney injury (AKI). Best Pract Res Clin Anaesthesiol 31:331–344. https://doi.org/10.1016/j.bpa.2017.10.003

    Article  PubMed  Google Scholar 

  11. Picone RP, Kendall DA (2015) Minireview: from the bench, toward the clinic: therapeutic opportunities for cannabinoid receptor modulation. Mol Endocrinol 29:801–813. https://doi.org/10.1210/me.2015-1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, Salvidio G, Di Marzo V, Cavallo Perin P, Gruden G (2011) Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 60:2386–2396. https://doi.org/10.2337/db10-1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deutsch DG, Goligorsky MS, Schmid PC, Krebsbach RJ, Schmid HHO, Das SK, Dey SK, Arreaza G, Thorup C, Stefano G, Moore LC (1997) Production and physiological actions of anandamide in the vasculature of the rat kidney. J Clin Investig 100:1538–1546. https://doi.org/10.1172/Jci119677

    Article  CAS  PubMed  Google Scholar 

  14. Jenkin KA, McAinch AJ, Briffa JF, Zhang Y, Kelly DJ, Pollock CA, Poronnik P, Hryciw DH (2013) Cannabinoid receptor 2 expression in human proximal tubule cells is regulated by albumin independent of ERK1/2 signaling. Cell Physiol Biochem 32:1309–1319. https://doi.org/10.1159/000354529

    Article  CAS  PubMed  Google Scholar 

  15. Jenkin KA, McAinch AJ, Grinfeld E, Hryciw DH (2010) Role for cannabinoid receptors in human proximal tubular hypertrophy. Cell Physiol Biochem 26:879–886. https://doi.org/10.1159/000323997

    Article  CAS  PubMed  Google Scholar 

  16. Moradi H, Oveisi F, Khanifar E, Moreno-Sanz G, Vaziri ND, Piomelli D (2016) Increased renal 2-arachidonoylglycerol level is associated with improved renal function in a mouse model of acute kidney injury. Cannabis Cannabinoid Res 1:218–228. https://doi.org/10.1089/can.2016.0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pressly JD, Mustafa SM, Adibi AH, Alghamdi S, Pandey P, Roy KK, Doerksen RJ, Moore BM Jr, Park F (2018) Selective cannabinoid 2 receptor stimulation reduces tubular epithelial cell damage after renal ischemia-reperfusion injury. J Pharmacol Exp Ther 364:287–299. https://doi.org/10.1124/jpet.117.245522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mukhopadhyay P, Rajesh M, Pan H, Patel V, Mukhopadhyay B, Batkai S, Gao B, Hasko G, Pacher P (2010) Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. Free Radic Biol Med 48:457–467. https://doi.org/10.1016/j.freeradbiomed.2009.11.022

    Article  CAS  PubMed  Google Scholar 

  19. Zoja C, Locatelli M, Corna D, Villa S, Rottoli D, Nava V, Verde R, Piscitelli F, Di Marzo V, Fingerle J, Adam JM, Rothenhaeusler B, Ottaviani G, Benardeau A, Abbate M, Remuzzi G, Benigni A (2016) Therapy with a selective cannabinoid receptor type 2 agonist limits albuminuria and renal injury in mice with type 2 diabetic nephropathy. Nephron 132:59–69. https://doi.org/10.1159/000442679

    Article  CAS  PubMed  Google Scholar 

  20. Jenkin KA, O’Keefe L, Simcocks AC, Briffa JF, Mathai ML, McAinch AJ, Hryciw DH (2016) Renal effects of chronic pharmacological manipulation of CB2 receptors in rats with diet-induced obesity. Br J Pharmacol 173:1128–1142. https://doi.org/10.1111/bph.13056

    Article  CAS  PubMed  Google Scholar 

  21. Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664

    CAS  PubMed  Google Scholar 

  22. Batkai S, Osei-Hyiaman D, Pan H, El-Assal O, Rajesh M, Mukhopadhyay P, Hong F, Harvey-White J, Jafri A, Hasko G, Huffman JW, Gao B, Kunos G, Pacher P (2007) Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury. FASEB J 21:1788–1800. https://doi.org/10.1096/fj.06-7451com

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feizi A, Jafari MR, Hamedivafa F, Tabrizian P, Djahanguiri B (2008) The preventive effect of cannabinoids on reperfusion-induced ischemia of mouse kidney. Exp Toxicol Pathol 60:405–410. https://doi.org/10.1016/j.etp.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  24. Li Q, Wang F, Zhang YM, Zhou JJ, Zhang Y (2013) Activation of cannabinoid type 2 receptor by JWH133 protects heart against ischemia/reperfusion-induced apoptosis. Cell Physiol Biochem 31:693–702. https://doi.org/10.1159/000350088

    Article  CAS  PubMed  Google Scholar 

  25. Montecucco F, Lenglet S, Braunersreuther V, Burger F, Pelli G, Bertolotto M, Mach F, Steffens S (2009) CB(2) cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion. J Mol Cell Cardiol 46:612–620. https://doi.org/10.1016/j.yjmcc.2008.12.014

    Article  CAS  PubMed  Google Scholar 

  26. Cakir M, Tekin S, Doganyigit Z, Erden Y, Soyturk M, Cigremis Y, Sandal S (2019) Cannabinoid type 2 receptor agonist JWH-133, attenuates Okadaic acid induced spatial memory impairment and neurodegeneration in rats. Life Sci 217:25–33. https://doi.org/10.1016/j.lfs.2018.11.058

    Article  CAS  PubMed  Google Scholar 

  27. Cakir M, Polat A, Tekin S, Vardi N, Taslidere E, Rumeysa Duran Z, Tanbek K (2015) The effect of dexmedetomidine against oxidative and tubular damage induced by renal ischemia reperfusion in rats. Ren Fail 37:704–708. https://doi.org/10.3109/0886022X.2015.1011550

    Article  CAS  PubMed  Google Scholar 

  28. Paller MS, Hoidal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74:1156–1164. https://doi.org/10.1172/JCI111524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cakir M, Duzova H, Taslidere A, Orhan G, Ozyalin F (2017) Protective effects of salusin-alpha and salusin-beta on renal ischemia/reperfusion damage and their levels in ischemic acute renal failure. Biotechnol Histochem 92:122–133. https://doi.org/10.1080/10520295.2017.1283056

    Article  CAS  Google Scholar 

  30. Malek M, Nematbakhsh M (2015) Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Ren Inj Prev 4:20–27. https://doi.org/10.12861/jrip.2015.06

    Article  CAS  PubMed  Google Scholar 

  31. Akcay A, Nguyen Q, Edelstein CL (2009) Mediators of inflammation in acute kidney injury. Mediat Inflamm 2009:137072. https://doi.org/10.1155/2009/137072

    Article  CAS  Google Scholar 

  32. Guijarro C, Egido J (2001) Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int 59:415–424. https://doi.org/10.1046/j.1523-1755.2001.059002415.x

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Z, Zhao H, Steinberg GK, Yenari MA (2003) Cellular and molecular events underlying ischemia-induced neuronal apoptosis. Drug News Perspect 16:497–503

    Article  CAS  Google Scholar 

  34. Ghosh S, Hayden MS (2012) Celebrating 25 years of NF-kappaB research. Immunol Rev 246:5–13. https://doi.org/10.1111/j.1600-065X.2012.01111.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marko L, Vigolo E, Hinze C, Park JK, Roel G, Balogh A, Choi M, Wubken A, Cording J, Blasig IE, Luft FC, Scheidereit C, Schmidt-Ott KM, Schmidt-Ullrich R, Muller DN (2016) Tubular epithelial NF-kappaB activity regulates ischemic AKI. J Am Soc Nephrol 27:2658–2669. https://doi.org/10.1681/asn.2015070748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lameire NH, Vanholder R (2004) Pathophysiology of ischaemic acute renal failure. Best Pract Res Clin Anaesthesiol 18:21–36

    Article  CAS  Google Scholar 

  37. Wang K, Xie S, Xiao K, Yan P, He W, Xie L (2018) Biomarkers of sepsis-induced acute kidney injury. Biomed Res Int 2018:6937947. https://doi.org/10.1155/2018/6937947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54:1012–1024. https://doi.org/10.1053/j.ajkd.2009.07.020

    Article  CAS  PubMed  Google Scholar 

  39. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273:4135–4142

    Article  CAS  Google Scholar 

  40. Ritter JK, Li G, Xia M, Boini K (2016) Anandamide and its metabolites: what are their roles in the kidney? Front Biosci (Schol Ed) 8:264–277

    Article  Google Scholar 

  41. Park F, Potukuchi PK, Moradi H, Kovesdy CP (2017) Cannabinoids and the kidney: effects in health and disease. Am J Physiol Ren Physiol 313:F1124–F1132. https://doi.org/10.1152/ajprenal.00290.2017

    Article  CAS  Google Scholar 

  42. Barutta F, Bruno G, Mastrocola R, Bellini S, Gruden G (2018) The role of cannabinoid signaling in acute and chronic kidney diseases. Kidney Int 94:252–258. https://doi.org/10.1016/j.kint.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  43. Lim JC, Lim SK, Han HJ, Park SH (2010) Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells. J Cell Physiol 225:654–663. https://doi.org/10.1002/jcp.22255

    Article  CAS  PubMed  Google Scholar 

  44. Mukhopadhyay P, Pan H, Rajesh M, Batkai S, Patel V, Harvey-White J, Mukhopadhyay B, Hasko G, Gao B, Mackie K, Pacher P (2010) CB1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br J Pharmacol 160:657–668. https://doi.org/10.1111/j.1476-5381.2010.00769.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mukhopadhyay P, Baggelaar M, Erdelyi K, Cao Z, Cinar R, Fezza F, Ignatowska-Janlowska B, Wilkerson J, van Gils N, Hansen T, Ruben M, Soethoudt M, Heitman L, Kunos G, Maccarrone M, Lichtman A, Pacher P, Van der Stelt M (2016) The novel, orally available and peripherally restricted selective cannabinoid CB2 receptor agonist LEI-101 prevents cisplatin-induced nephrotoxicity. Br J Pharmacol 173:446–458. https://doi.org/10.1111/bph.13338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu L, Yang C, Zhao T, Xu M, Tang Q, Yang B, Rong R, Zhu T (2012) Erythropoietin ameliorates renal ischemia and reperfusion injury via inhibiting tubulointerstitial inflammation. J Surg Res 176:260–266. https://doi.org/10.1016/j.jss.2011.06.035

    Article  CAS  PubMed  Google Scholar 

  47. Kucuk A, Kabadere S, Tosun M, Koken T, Kinaci MK, Isikli B, Erkasap N (2009) Protective effects of doxycycline in ischemia/reperfusion injury on kidney. J Physiol Biochem 65:183–191

    Article  CAS  Google Scholar 

  48. Tadagavadi RK, Wang W, Ramesh G (2010) Netrin-1 regulates Th1/Th2/Th17 cytokine production and inflammation through UNC5B receptor and protects kidney against ischemia-reperfusion injury. J Immunol 185:3750–3758. https://doi.org/10.4049/jimmunol.1000435

    Article  CAS  PubMed  Google Scholar 

  49. Simmons EM, Himmelfarb J, Sezer MT, Chertow GM, Mehta RL, Paganini EP, Soroko S, Freedman S, Becker K, Spratt D, Shyr Y, Ikizler TA (2004) Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int 65:1357–1365. https://doi.org/10.1111/j.1523-1755.2004.00512.x

    Article  CAS  PubMed  Google Scholar 

  50. Murikinati S, Juttler E, Keinert T, Ridder DA, Muhammad S, Waibler Z, Ledent C, Zimmer A, Kalinke U, Schwaninger M (2010) Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J 24:788–798. https://doi.org/10.1096/fj.09-141275

    Article  CAS  PubMed  Google Scholar 

  51. Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, Garcia-Gutierrez MS, Vivancos J, Nombela F, Torres M, Burguete MC, Manzanares J, Lizasoain I, Moro MA (2012) Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 43:211–219. https://doi.org/10.1161/strokeaha.111.631044

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We were supported by Bozok University, Department of Scientific Research Projects, (Project No: 6602b-TF/18-193).

Author information

Authors and Affiliations

Authors

Contributions

MÇ projected and conducted the study, analyzed the data, and wrote the study. MÇ and ST operated rats. ZD and EK performed histopathological and immunohistochemical analyzes. PÇ made ELISA analysis.

Corresponding author

Correspondence to Murat Çakır.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakır, M., Tekin, S., Doğanyiğit, Z. et al. The protective effect of cannabinoid type 2 receptor activation on renal ischemia–reperfusion injury. Mol Cell Biochem 462, 123–132 (2019). https://doi.org/10.1007/s11010-019-03616-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03616-6

Keywords

Navigation