Skip to main content
Log in

Encorafenib inhibits migration, induces cell cycle arrest and apoptosis in colorectal cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Encorafenib, a new-generation BRAF inhibitor, has been approved by FDA for the treatment of melanoma in combination with binimetinib. However, the mechanism of the drug works in colorectal cancer (CRC) is still unclear. In this study, the suppression of growth of CRC cells by encorafenib was investigated. The effects of treatment of encorafenib on pathways linked to cancer were studied, and the effective inhibition of cell proliferation was documented. Our findings showed that cell migration was inhibited by encorafenib through a likely involvement of MPP and TIMP modulation. Furthermore, encorafenib treatment also induced cell cycle arrest. In addition, induction of apoptosis in CRC cells by elevating levels of PUMA. These observations indicate the potential therapeutic efficacy of encorafenib on CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Stellingwerf ME, de Koning MA, Pinkney T, Bemelman WA, D’Haens GR, Buskens CJ (2018) The risk of colectomy and colorectal cancer after appendectomy in patients with ulcerative colitis: a systematic review and meta-analysis. J Crohns Colitis. https://doi.org/10.1093/ecco-jcc/jjy163

    Article  Google Scholar 

  2. Hendler R, Zhang Y (2018) Probiotics in the treatment of colorectal cancer. Medicines (Basel) 5:E101

    Article  CAS  Google Scholar 

  3. Andres SF, Williams KN, Rustgi AK (2018) The Molecular Basis of Metastatic Colorectal Cancer. Curr Colorectal Cancer Rep 14:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shen Y, Wang C, Ren Y, Ye J (2018) A comprehensive look at the role of hyperlipidemia in promoting colorectal cancer liver metastasis. J Cancer 9:2981–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin C, Cai X, Zhang J, Wang W, Sheng Q, Hua H, Zhou X (2018) Role of gut microbiota in the development and treatment of colorectal cancer. Digestion. https://doi.org/10.1159/0004940521-7

    Article  PubMed  Google Scholar 

  6. Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G (2018) Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 24:3834–3848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pan JH, Zhou H, Zhu SB, Huang JL, Zhao XX, Ding H, Pan YL (2018) Development of small-molecule therapeutics and strategies for targeting RAF kinase in BRAF-mutant colorectal cancer. Cancer Manag Res 10:2289–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fingerhut A, Chen WT, Boni L, Uranues S (2018) Complete mesocolic excision for colonic cancer: a review. Minerva Chir. https://doi.org/10.23736/s0026-4733.18.07777-5

    Article  PubMed  Google Scholar 

  9. Emmanuel A, Haji A (2016) Complete mesocolic excision and extended (D3) lymphadenectomy for colonic cancer: is it worth that extra effort? A review of the literature. Int J Colorectal Dis 31:797–804

    Article  PubMed  Google Scholar 

  10. Raglow Z, Thomas SM (2015) Tumor matrix protein collagen XIalpha1 in cancer. Cancer Lett 357:448–453

    Article  CAS  PubMed  Google Scholar 

  11. Hadler-Olsen E, Winberg JO, Uhlin-Hansen L (2013) Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol 34:2041–2051

    Article  CAS  PubMed  Google Scholar 

  12. Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, Chiarion-Sileni V, Dutriaux C, de Groot JWB, Yamazaki N, Loquai C, Moutouh-de Parseval LA, Pickard MD, Sandor V, Robert C, Flaherty KT (2018) Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 19:603–615

    Article  CAS  PubMed  Google Scholar 

  13. Ursem C, Atreya CE, Van Loon K (2018) Emerging treatment options for BRAF-mutant colorectal cancer. Gastrointest Cancer 8:13–23

    PubMed  PubMed Central  Google Scholar 

  14. Rogiers A, Thomas D, Vander Borght S, van den Oord JJ, Bechter O, Dewaele M, Rambow F, Marine JC, Wolter P (2018) Dabrafenib plus trametinib in BRAF K601E-mutant melanoma. Br J Dermatol. https://doi.org/10.1111/bjd.17250

    Article  PubMed  Google Scholar 

  15. Tong J, Zheng X, Tan X, Fletcher R, Nikolovska-Coleska Z, Yu J, Zhang L (2018) Mcl-1 phosphorylation without degradation mediates sensitivity to HDAC inhibitors by liberating BH3-only proteins. Cancer Res 78:4704–4715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tong J, Tan S, Nikolovska-Coleska Z, Yu J, Zou F, Zhang L (2017) FBW7-dependent Mcl-1 degradation mediates the anticancer effect of Hsp90 inhibitors. Mol Cancer Ther 16:1979–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tong J, Wang P, Tan S, Chen D, Nikolovska-Coleska Z, Zou F, Yu J, Zhang L (2017) Mcl-1 degradation is required for targeted therapeutics to eradicate colon cancer cells. Cancer Res 77:2512–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tong J, Tan S, Zou F, Yu J, Zhang L (2017) FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation. Oncogene 36:787–796

    Article  CAS  PubMed  Google Scholar 

  19. Chen D, Tong J, Yang L, Wei L, Stolz DB, Yu J, Zhang J, Zhang L (2018) PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad Sci USA 115:3930–3935

    Article  CAS  PubMed  Google Scholar 

  20. Knickelbein K, Tong J, Chen D, Wang YJ, Misale S, Bardelli A, Yu J, Zhang L (2018) Restoring PUMA induction overcomes KRAS-mediated resistance to anti-EGFR antibodies in colorectal cancer. Oncogene 37:4599–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tong JS, Zhang QH, Huang X, Fu XQ, Qi ST, Wang YP, Hou Y, Sheng J, Sun QY (2011) Icaritin causes sustained ERK1/2 activation and induces apoptosis in human endometrial cancer cells. PLoS ONE 6:e16781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koelblinger P, Thuerigen O, Dummer R (2018) Development of encorafenib for BRAF-mutated advanced melanoma. Curr Opin Oncol 30:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schaper-Gerhardt K, Okoye S, Herbst R, Ulrich J, Terheyden P, Pfohler C, Utikal JS, Kreuter A, Mohr P, Dippel E, Satzger I, Sucker A, Schadendorf D, Ugurel S, Gutzmer R (2018) PD-L1 status does not predict the outcome of BRAF inhibitor therapy in metastatic melanoma. Eur J Cancer 88:67–76

    Article  CAS  PubMed  Google Scholar 

  24. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  PubMed  Google Scholar 

  25. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140:3079–3093

    Article  CAS  PubMed  Google Scholar 

  26. Chen D, Wei L, Yu J, Zhang L (2014) Regorafenib inhibits colorectal tumor growth through PUMA-mediated apoptosis. Clin Cancer Res 20:3472–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiu W, Wu B, Wang X, Buchanan ME, Regueiro MD, Hartman DJ, Schoen RE, Yu J, Zhang L (2011) PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. J Clin Invest 121:1722–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hong SH, Lee DH, Lee YS, Jo MJ, Jeong YA, Kwon WT, Choudry HA, Bartlett DL, Lee YJ (2017) Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget 8:115164–115178

    PubMed  PubMed Central  Google Scholar 

  29. Yu J, Zhang L (2003) No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4:248–249

    Article  CAS  PubMed  Google Scholar 

  30. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L (2003) PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 100:1931–1936

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangning Li.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, X. Encorafenib inhibits migration, induces cell cycle arrest and apoptosis in colorectal cancer cells. Mol Cell Biochem 459, 113–120 (2019). https://doi.org/10.1007/s11010-019-03554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03554-3

Keywords