Skip to main content
Log in

Hydrogen sulfide modulates SIRT1 and suppresses oxidative stress in diabetic nephropathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

DN is recognized as not only a leading cause of end stage renal disease (ESRD) but also an independent risk factor for cardiovascular disease (CVD). Novel therapeutic approaches to diabetic nephropathy (DN) are needed, or else, healthcare resources will be overwhelmed by the expected worldwide increase in associated cases of ESRD and CVD. Reactive oxygen species (ROS) and advanced glycation end product (AGE) are implicated in the development of DN. Hydrogen sulfide (H2S) is known for its antioxidant and antiapoptotic characteristics. Simultaneously diabetics have lower H2S levels. Thus, it is worth investigating the use of H2S in treatment of DN. To investigate the potential therapeutic role of H2S in DN. Sixty male rats were divided into four groups: control, DN, DN+NaHS30 µmol/kg/day and DN+NaHS100 µmol/kg/day. Fasting blood sugar (FBS), kidney function tests, SIRT1 activity, superoxide dismutase activity (SOD), malondialdehyde (MDA) and expression of caspase3 and p53 in renal tissues were assessed. Kidney was examined histopathologically. DN rats had higher FBS, renal dysfunction, decreased SIRT1 and SOD activity levels, increased caspase3 and p53 relative expression and increased MDA in renal tissues. NaHS increased SIRT1 and reversed biochemical, apoptotic, oxidant and pathologic parameters characteristic of DN, with better results using a dose of 100 µmol/kg/day. H2S has a protective role against DN through decreasing FBS, ROS, apoptosis and upregulating SIRT1, thus preserving renal cells from further damage caused by DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Diabetes Care (2018) 41(Supplement 1): S1–S2. https://doi.org/10.2337/dc18-Sint01

  2. Umanath K, Lewis J (2018) Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis 71(6):884–895

    Article  PubMed  Google Scholar 

  3. Mahmoodi B, Fox C, Astor B, Nelson R, Matsushita K, Coresh J (2013) Association of chronic kidney disease with adverse outcomes. Chronic Kidney Dis 381(9866):532–533

    Google Scholar 

  4. Durante W (2016) Hydrogen sulfide therapy in diabetes-accelerated atherosclerosis: a whiff of success. Diabetes 65(10):2832–2834. https://doi.org/10.2337/dbi16-0042

    Article  CAS  PubMed  Google Scholar 

  5. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410(6825):227–230

    Article  CAS  PubMed  Google Scholar 

  6. Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27:2072–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu R, Zhong Y, Li X (2014) Role of transcription factor acetylation in diabetic kidney disease. Diabetes 63(7):2440–2453

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D (2013) Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci 124(3):153–164

    Article  CAS  Google Scholar 

  9. He W, Wang Y, Zhang MZ, You L, Davis LS, Fan H, Yang HC, Fogo AB, Zent R, Harris RC, Breyer MD, Hao CM (2010) Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 120(4):1056–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang J, Tian S, Han J, Xiong P (2014) Resveratrol as a therapeutic agent for renal fibrosis induced by unilateral ureteral obstruction. Ren Fail 36(2):285–291

    Article  CAS  PubMed  Google Scholar 

  11. Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, Boss O, Hirsch ML, Ribich S, Smith JJ (2010) Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24:1403–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kitada M, Takeda A, Nagai T, Ito H, Kanasaki K, Koya D (2011) Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res https://doi.org/10.1155/2011/908185

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miyazaki R, Ichiki T, Hashimoto T, Inanaga K, Imayama I, Sadoshima J, Sunagawa K (2008) SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 28:1263–1269

    Article  CAS  PubMed  Google Scholar 

  14. De Morais H, de Souza CP, da Silva LM, Ferreira DM, Werner MF, Andreatini R, da Cunha JM, Zanoveli JM. Increased oxidative stress in prefrontal cortex and hippocampus is related to depressive-like behavior in streptozotocin-diabetic rats. Behav Brain Res 258:52–64

  15. Tang Z, Wei Z, Juan Y, Ping Z, Yin T, Zhi-Fang X, Mang-Hong L, Hai-Jun W, Xiao-Qing T (2015) Antidepressant-like and anxiolytic-like effects of hydrogen sulfide in streptozotocin-induced diabetic rats through inhibition of hippocampal oxidative stress. Behav Pharmacol 26(5):427–435

    Article  CAS  PubMed  Google Scholar 

  16. Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22(2):158–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moss GA, Bondar RJ, Buzzelli DM (1975) Kinetic enzymatic method for determining serum creatinine. Clin Chem 21(10):1422–1426

    CAS  PubMed  Google Scholar 

  18. Rowe DJ, Dawnay A, Watts GF (1990) Microalbuminuria in diabetes mellitus: review and recommendations for the measurement of albumin in urine. Ann Clin Biochem 4:297–312

    Article  Google Scholar 

  19. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  20. Asakawa T, Matsushita S (1979) Lipids 15:137–140

    Article  Google Scholar 

  21. Xia M, Chen L, Muh RW, Li PL, Li N (2009) Production and actions of hydrogen sulfide, a novel gaseous bioactive substance in the kidneys. J Pharmacol Exp Ther 329(3):1056–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366

    Article  CAS  PubMed  Google Scholar 

  23. Dugbartey GJ, Bouma HR, Strijkstra AM, Boerema AS, Henning HR (2015) Induction of a torpor-like state by 5′-AMP does not depend on H2S production. PLoS ONE 10(8):e0136113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dugbartey GJ, Talaei F, Houwertjes MC (2015) Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming – The role of renal H2S-producing enzymes. Eur J Pharmacol 769:225–233

    Article  CAS  PubMed  Google Scholar 

  25. Snijder PM, Frenay AR, Koning AM (2014) Sodium thiosulfate attenuates angiotensinII-induced hypertension, proteinuria and renal damage. Nitric Oxide 42:87–98

    Article  CAS  PubMed  Google Scholar 

  26. Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, McVie R, Bocchini JA (2010) Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal 12(11):1333–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dutta M, Biswas UK, Chakraborty R, Banerjee P, Raychaudhuri U, Kumar A (2014) Evaluation of plasma H2S levels and H2S synthesis in streptozotocin induced Type-2 diabetes-an experimental study based on Swietenia macrophylla seeds. Asian Pac J Trop Biomed 4(1):S483–S487

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou X, Feng Y, Zhan Z, Chen J (2014) Hydrogen sulfide alleviates diabetic nephropathy on a streptozotocin-induced diabetic rat model. J Biol Chem 289(42):28827–28834t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue R, Hao D-D, Sun J-P, Li W-W, Zhao M-M, Li X-H, Zhu Y-C (2013) Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal 19(1):5–23. https://doi.org/10.1089/ars.2012.5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng D, Liang B, Li Y (2013) Antihyperglycemic effect of Ginkgo biloba extract in streptozotocin-induced diabetes in rats. Biomed Res Int. https://doi.org/10.1155/2013/162724

    Article  PubMed  PubMed Central  Google Scholar 

  31. Safar MM, Abdelsalam RM (2015) H2S donors attenuate diabetic nephropathy in rats: modulation of oxidant status and polyol pathway. Pharmacol Rep 67(1):17–23

    Article  CAS  PubMed  Google Scholar 

  32. Yuan P, Xue H, Zhou L, Qu L, Li C, Wang Z (2011) Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide. Nephrol Dial Transplant 26(7):2119–2126

    Article  CAS  PubMed  Google Scholar 

  33. Qian X, Li X, Ma F, Luo S, Ge R, Zhu Y (2016) Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy. Biochem Biophys Res Commun 473(4):931–938

    Article  CAS  PubMed  Google Scholar 

  34. Kaur M, Sachdeva S, Bedi O, Kaur T, Kumar P (2015) Combined effect of hydrogen sulphide donor and losartan in experimental diabetic nephropathy in rats. J Diabetes Metab Disord 14:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen H, Brahmbhatt S, Gupta A, Sharma AC (2005) Duration of streptozotocin-induced diabetes differentially affects p 38-mitogen-activated protein kinase (MAPK) phosphorylation in renal and vascular dysfunction. Cardiovasc Diabetol 4:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vallon V, Albinus M, Blach D (1998) Effect of KATP channel blocker U37883A on renal function in experimental diabetes mellitus in rats. J Pharmacol Exp Ther 286:1215

    CAS  PubMed  Google Scholar 

  37. Nobrega MA, Fleming S, Roman RJ, Shiozawa M, Schlick N, Lazar J, Jacob HJ (2004) Initial characterization of a rat model of diabetic nephropathy. Diabetes 53:735

    Article  CAS  PubMed  Google Scholar 

  38. Casey RG, Joyce M, Roche-Nagle G, Chen G, Bouchier-Hayes D (2005) Pravastatin modulates early diabetic nephropathy in an experimental model of diabetic renal disease. J Surg Res 123:176–181

    Article  CAS  PubMed  Google Scholar 

  39. O’Donnell MP, Kasiske BL, Keane WF (1988) Glomerular hemodynamic and structural alterations in experimental diabetes mellitus. FASEB J 2:2339

    Article  PubMed  Google Scholar 

  40. Kuwabara A, Satoh M, Tomita N (2010) Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia 53:2056–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toto RD (1995) Conventional measurement of renal function utilizing serum creatinine, creatinine clearance, inulin and para-aminohippuric acid clearance. Curr Opin Nephr Hypertens 4:505–509

    Article  CAS  Google Scholar 

  42. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38:1933–1953

    CAS  PubMed  Google Scholar 

  43. Shemesh O, Golbetz H, Kriss JP, Myers BD.(1985):Limitations of creatinine as a Kidney Int.28(5):830–838

  44. Wolf G (2004) New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Investig 34:785–796

    Article  CAS  Google Scholar 

  45. Ruggenenti P, Schieppati A, Remuzzi G (2001) Progression, remission, regression of chronic renal diseases. The Lancet 357:1601–1608

    Article  CAS  Google Scholar 

  46. Yamamoto J, Sato W, Kosugi T, Yamamoto T, Kimura T, Taniguchi S (2013) Distribution of hydrogen sulfide (H2S)-producing enzymes and the roles of the H2S donor sodium hydrosulfide in diabetic nephropathy. Clin Exp Nephrol 17(1):32–40

    Article  CAS  PubMed  Google Scholar 

  47. Chuang P, Dai Y, Liu R, He H, Kretzler M, Jim B (2011) Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS ONE 6(8):e23566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou S, Chen H, Wan Y, Zhang Q, Wei Y, Huang S, Liu J, Lu J, Zhang Z, Yang R, Zhang R, Cai H, Liu D, Liang C (2011) Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 109(6):639–648

    Article  CAS  PubMed  Google Scholar 

  49. Yacoub R, Lee K, He JC (2014) The role of SIRT1 in diabetic kidney disease. Front Endocrinol 5:166

    Article  Google Scholar 

  50. Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS, Chung S, Ko SH, Shin SJ, Choi BS, Kim HW, Kim YS, Lee JH, Chang YS, Park CW (2013) Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT-1-PGC1a axis in db/db mice. Diabetologia 56:204–217

    Article  CAS  PubMed  Google Scholar 

  51. Tikoo K, Singh K, Kabra D, Sharma V, Gaikwad A (2008) Change in histoneH3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy. Free Radic Res 42:397–404, 2008

    Article  CAS  PubMed  Google Scholar 

  52. Maeda S, Koya D, Araki S (2011) Association between single nucleotide polymorphisms within genes encoding sirtuin families and diabetic nephropathy in Japanese subjects with type 2 diabetes. Clin Exp Nephrol 15(30):381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X (2015) Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr Med Chem 22(24):2858–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo K, Lu J, Kou J, Wu M, Zhang L, Yu H (2015) Increased urinary Smad3 is significantly correlated with glomerular hyperfiltration and a reduced glomerular filtration rate and is a new urinary biomarker for diabetic nephropathy. BMC Nephrol 16:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kundu S, Pushpakumar S, Sen U (2015) MMP-9- and NMDA receptor-mediated mechanism of diabetic renovascular remodeling and kidney dysfunction: hydrogen sulfide is a key modulator. Nitric Oxide 46:172–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zafar M, Naqvi SN (2010) Effects of STZ-induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. Int J Morphol 28:135e142

    Article  Google Scholar 

  57. Wang W, Cai G, Ning Y, Cui J, Hong Q, Bai X, Chen X (2016) Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats. Sci Rep 6:30292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We feel grateful for the staff members of molecular biology units of Biochemistry department, faculty of medicine, Cairo University.

Funding

This work was supported by Cairo University, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba S. Omar.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H.H., Taha, F.M., Omar, H.S. et al. Hydrogen sulfide modulates SIRT1 and suppresses oxidative stress in diabetic nephropathy. Mol Cell Biochem 457, 1–9 (2019). https://doi.org/10.1007/s11010-019-03506-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03506-x

Keywords

Navigation