Skip to main content
Log in

Curcumin pretreatment prevents hydrogen peroxide-induced oxidative stress through enhanced mitochondrial function and deactivation of Akt/Erk signaling pathways in rat bone marrow mesenchymal stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cells (BMSCs)-based therapy has emerged as a desirable modality for the treatment of tissue injury with promising therapeutic effects; however, low survival rate of transplanted cells due to harsh microenvironment with hypoxia and oxidative stress results in hampered therapeutic benefits of this therapy. Curcumin, a natural bioactive product, is a dietary component which has gained increasing attention owing to its beneficial health properties. Here, we reported the protective effects of curcumin pretreatment on BMSCs injury induced by hydrogen peroxide (H2O2), which was used as ROS source of oxidative stress in vitro. We found that curcumin pretreatment remarkably inhibited H2O2-induced cell viability reduction, LDH leakage, and cell apoptosis in BMSCs. Moreover, curcumin pretreatment prevented H2O2-induced mitochondrial dysfunction via suppressing adenosine triphosphate loss, reactive oxygen species accumulation, and membrane potential decline. In addition, curcumin pretreatment markedly reduced the phosphorylation levels of Akt and Erk1/2. Taken together, our investigations demonstrated that curcumin pretreatment conferred BMSCs the ability to survive from H2O2-induced oxidative stress, which might attribute to its prevention of mitochondrial dysfunction and deactivation of Akt and Erk1/2 signaling pathways. Thus, this study sheds more light on the pharmacological mechanisms of curcumin, and suggests that BMSCs preconditioned with curcumin might be an effective way for cell therapy in tissue repair treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Y, Chen X, Cao W, Shi Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15:1009–1016

    Article  CAS  PubMed  Google Scholar 

  2. Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20:14–20

    Article  CAS  PubMed  Google Scholar 

  3. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Article  CAS  PubMed  Google Scholar 

  4. Russo V, Young S, Hamilton A, Amsden BG, Flynn LE (2014) Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials 35:3956–3974

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Cui W, Ye J, Ji S, Zhao X, Zhan L, Feng J, Zhang Z, Zhao Y (2012) A cellular delivery system fabricated with autologous BMSCs and collagen scaffold enhances angiogenesis and perfusion in ischemic hind limb. J Biomed Mater Res A 100:1438–1447

    Article  PubMed  Google Scholar 

  6. Song H, Cha MJ, Song BW, Kim IK, Chang W, Lim S, Choi EJ, Ham O, Lee SY, Chung N, Jang Y, Hwang KC (2010) Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells 28:555–563

    CAS  PubMed  Google Scholar 

  7. Liu P, Feng Y, Dong C, Yang D, Li B, Chen X, Zhang Z, Wang Y, Zhou Y, Zhao L (2014) Administration of BMSCs with muscone in rats with gentamicin-induced AKI improves their therapeutic efficacy. PLoS ONE 9:e97123

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xinaris C, Morigi M, Benedetti V, Imberti B, Fabricio AS, Squarcina E, Benigni A, Gagliardini E, Remuzzi G (2013) A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant 22:423–436

    Article  CAS  PubMed  Google Scholar 

  9. Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis MI, Franco R (2014) Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Signal 21:66–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    Article  CAS  PubMed  Google Scholar 

  11. Weinberg E, Maymon T, Weinreb M (2014) AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFα production and oxidative stress. J Mol Endocrinol 52:67–76

    CAS  PubMed  Google Scholar 

  12. Zhang F, Ren T, Wu J (2015) TGF-β1 induces apoptosis of bone marrow-derived mesenchymal stem cells via regulation of mitochondrial reactive oxygen species production. Exp Ther Med 10:1224–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rojkinda M, Domínguez-Rosales J-A, Nieto N, Greenwel P (2002) Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 59:1872–1891

    Article  Google Scholar 

  14. Yang SR, Park JR, Kang KS (2015) Reactive oxygen species in mesenchymal stem cell aging: implication to lung diseases. Oxid Med Cell Longev 2015:486263

    PubMed  PubMed Central  Google Scholar 

  15. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14

    Article  CAS  PubMed  Google Scholar 

  16. Hwang SL, Yen GC (2009) Modulation of Akt, JNK, and p38 activation is involved in citrus flavonoid-mediated cytoprotection of PC12 cells challenged by hydrogen peroxide. J Agric Food Chem 57:2576–2582

    Article  CAS  PubMed  Google Scholar 

  17. Maurya AK, Vinayak M (2016) PI-103 and Quercetin attenuate PI3 K-AKT signaling pathway in T-Cell lymphoma exposed to hydrogen peroxide. PLoS ONE 11:e0160686

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G (2012) Curcumin–from molecule to biological function. Angew Chem Int Ed Engl 51:5308–5332

    Article  CAS  PubMed  Google Scholar 

  20. Cremers NA, Lundvig DM, van Dalen SC, Schelbergen RF, van Lent PL, Szarek WA, Regan RF, Carels CE, Wagener FA (2014) Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells. Int J Mol Sci 15:17974–17999

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yagi H, Tan J, Tuan RS (2013) Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. J Cell Biochem 114:1163–1173

    Article  CAS  PubMed  Google Scholar 

  22. Yu C, Kim BS, Kim E (2016) FAF1 mediates regulated necrosis through PARP1 activation upon oxidative stress leading to dopaminergic neurodegeneration. Cell Death Differ 23:1873–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594:57–72

    Article  CAS  PubMed  Google Scholar 

  24. Lee YJ, Park KH, Park HH, Kim YJ, Lee KY, Kim SH, Koh SH (2009) Cilnidipine mediates a neuroprotective effect by scavenging free radicals and activating the phosphatidylinositol 3-kinase pathway. J Neurochem 111:90–100

    Article  CAS  PubMed  Google Scholar 

  25. Prathapan A, Vineetha VP, Raghu KG (2014) Protective effect of Boerhaavia diffusaL. against mitochondrial dysfunction in angiotensin II induced hypertrophy in H9c2 cardiomyoblast cells. PLoS ONE 9:e96220

    Article  PubMed  PubMed Central  Google Scholar 

  26. Han Z, Jing Y, Zhang S, Liu Y, Shi Y, Wei L (2012) The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. Cell Biosci 2:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu P, Feng Y, Wang Y, Zhou Y (2014) Therapeutic action of bone marrow-derived stem cells against acute kidney injury. Life Sci 115:1–7

    Article  PubMed  Google Scholar 

  28. Fang J, Chen L, Fan L, Wu L, Chen X, Li W, Lin Y, Wang W (2011) Enhanced therapeutic effects of mesenchymal stem cells on myocardial infarction by ischemic postconditioning through paracrine mechanisms in rats. J Mol Cell Cardiol 51:839–847

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Hou JF, Shen Y, Wang W, Wei YJ, Hu S (2010) Low level laser irradiation precondition to create friendly milieu of infarcted myocardium and enhance early survival of transplanted bone marrow cells. J Cell Mol Med 14:1975–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sart S, Ma T, Li Y (2014) Preconditioning stem cells for in vivo delivery. Biores Open Access 3:137–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qiao H, Zhang R, Gao L, Guo Y, Wang J, Zhang R, Li X, Li C, Chen Y, Cao F (2016) Molecular imaging for comparison of different growth factors on bone marrow-derived mesenchymal stromal cells’ survival and proliferation in vivo. Biomed Res Int 2016:1363902

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shehzad A, Rehman G, Lee YS (2013) Curcumin in inflammatory diseases. BioFactors 39:69–77

    Article  CAS  PubMed  Google Scholar 

  33. Daverey A, Agrawal SK (2016) Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes. Neuroscience 333:92–103

    Article  CAS  PubMed  Google Scholar 

  34. Xiao Y, Li X, Cui Y, Zhang J, Liu L, Xie X, Hao H, He G, Kander MC, Chen M, Liu Z, Verfaillie CM, Zhu H, Lei M, Liu Z (2014) Hydrogen peroxide inhibits proliferation and endothelial differentiation of bone marrow stem cells partially via reactive oxygen species generation. Life Sci 112:33–40

    Article  CAS  PubMed  Google Scholar 

  35. Zhou H, Yang J, Xin T, Li D, Guo J, Hu S, Zhou S, Zhang T, Zhang Y, Han T, Chen Y (2014) Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3 K/Akt-Sfrp2 pathways. Free Radic Biol Med 77:363–375

    Article  CAS  PubMed  Google Scholar 

  36. Wei Y-H, Lee H-C (2002) Oxidative stress, mitochondrial DNA mutation and impairment of antioxidant enzymes in aging. Exp Biol Med 227:671–682

    Article  CAS  Google Scholar 

  37. Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70:257–265

    Article  PubMed  Google Scholar 

  38. Hocsak E, Racz B, Szabo A, Mester L, Rapolti E, Pozsgai E, Javor S, Bellyei S, Gallyas F Jr, Sumegi B, Szigeti A (2010) TIP47 protects mitochondrial membrane integrity and inhibits oxidative-stress-induced cell death. FEBS Lett 584:2953–2960

    Article  CAS  PubMed  Google Scholar 

  39. Kwon SH, Hong SI, Kim JA, Jung YH, Kim SY, Kim HC, Lee SY, Jang CG (2011) The neuroprotective effects of Lonicera japonica THUNB. against hydrogen peroxide-induced apoptosis via phosphorylation of MAPKs and PI3 K/Akt in SH-SY5Y cells. Food Chem Toxicol 49:1011–1019

    Article  CAS  PubMed  Google Scholar 

  40. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  CAS  PubMed  Google Scholar 

  41. Bisht K, Wagner KH, Bulmer AC (2010) Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds. Toxicology 278:88–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81301632) and Shaanxi Provincial Natural Science Foundation (No. 2014JM4179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahai Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Gao, J., Wang, Y. et al. Curcumin pretreatment prevents hydrogen peroxide-induced oxidative stress through enhanced mitochondrial function and deactivation of Akt/Erk signaling pathways in rat bone marrow mesenchymal stem cells. Mol Cell Biochem 443, 37–45 (2018). https://doi.org/10.1007/s11010-017-3208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3208-5

Keywords

Navigation