Skip to main content

Advertisement

Log in

Immunobiology of spinal cord injuries and potential therapeutic approaches

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The incidence of spinal cord injuries (SCI) is high every year. As the spinal cord is the highway that allows for the brain to control the rest of the body, spinal cord injuries greatly impact the quality of life of the patients. The SCI include the primary response consisting of the initial accident-induced damage and the secondary response that is characterized by damage due to inflammation and biological responses. Astrocytes are the first to act at the site of the injury, forming a glial scar and attracting immune cells. The immune system plays a role in cleaning out the debris caused by the injury, as well as preventing neurons to grow and heal. The secondary injury caused by the inflammatory response is the major target to combat SCI. This article critically reviews the key players in the inflammatory SCI response and potential therapies, specifically targeting astrocytes, neutrophils, and macrophages. These cells are both beneficial and detrimental following SCI, depending on the released molecules and the types of cells infiltrated to the site of injury. Indeed, depending on the subtype of macrophages, M1 or M2, beneficial or detrimental response could be incited. Therapeutic strategies to regulate and manipulate the immune cells via increasing or decreasing their recruitment to the site of injury could be developed together with upregulating and downregulating the release of certain chemicals from the infiltrated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Devivo M (2012) Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 50:365–372

    Article  CAS  PubMed  Google Scholar 

  2. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71:281–299

    Google Scholar 

  3. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209:378–388

    Article  CAS  PubMed  Google Scholar 

  4. Karimi-Abdolrezaee S, Billakanti R (2012) Reactive astrogliosis after spinal cord injury—beneficial and detrimental effects. Mol Neurobiol 46:251–264

    Article  CAS  PubMed  Google Scholar 

  5. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  6. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haan N, Zhu B, Wang J, Wei X, Song B (2015) Crosstalk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury. J Neuroinflammation 12:109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang H, Liu C, Wang C, Zhang Q, An J, Zhang L, Hao D (2016) Therapeutical strategies for spinal cord injury and a promising autologous astrocyte-based therapy using efficient reprogramming techniques. Mol Neurobiol 53:2826–2842

    Article  CAS  PubMed  Google Scholar 

  9. Fuller ML, DeChant AK, Rothstein B, Caprariello A, Wang R, Hall AK, Miller RH (2007) Bone morphogenetic proteins promote gliosis in demyelinating spinal cord lesions. Ann Neurol 62:288–300

    Article  CAS  PubMed  Google Scholar 

  10. Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, Rechavi G, Schwartz M (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5:e171

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pineau I, Sun L, Bastien D, Lacroix S (2010) Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 24:540–553

    Article  CAS  PubMed  Google Scholar 

  12. Mostacada K, Oliveira FL, Villa-Verde DM, Martinez AMB (2015) Lack of galectin-3 improves the functional outcome and tissue sparing by modulating inflammatory response after a compressive spinal cord injury. Exp Neurol 271:390–400

    Article  CAS  PubMed  Google Scholar 

  13. Watzlawick R, Kenngott EE, Liu FDM, Schwab JM, Hamann A (2015) Anti-inflammatory effects of IL-27 in zymosan-induced peritonitis: inhibition of neutrophil recruitment partially explained by impaired mobilization from bone marrow and reduced chemokine levels. PLoS ONE 10:e0137651

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kubota K, Saiwai H, Kumamaru H, Maeda T, Ohkawa Y, Aratani Y, Nagano T, Iwamoto Y, Okada S (2012) Myeloperoxidase exacerbates secondary injury by generating highly reactive oxygen species and mediating neutrophil recruitment in experimental spinal cord injury. Spine 37:1363–1369. doi:10.1097/BRS.0b013e31824b9e77

    Article  PubMed  Google Scholar 

  15. Gok HB, Solaroglu I, Okutan O, Cimen B, Kaptanoglu E, Palaoglu S (2007) Metoprolol treatment decreases tissue myeloperoxidase activity after spinal cord injury in rats. J Clin Neurosci 14:138–142

    Article  Google Scholar 

  16. Okutan O, Solaroglu I, Beskonakli E, Taskin Y (2007) Recombinant human erythropoietin decreases myeloperoxidase and caspase-3 activity and improves early functional results after spinal cord injury in rats. J Clin Neurosci 14:364–368

    Article  CAS  PubMed  Google Scholar 

  17. Khalatbary AR, Ahmadvand H (2011) Effect of oleuropein on tissue myeloperoxidase activity in experimental spinal cord trauma. Iran Biomed J 15:164

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shapiro SD (1998) Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol 10:602–608

    Article  CAS  PubMed  Google Scholar 

  19. Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J (2008) MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39:1121–1126. doi:10.1161/STROKEAHA.107.500868

    Article  CAS  PubMed  Google Scholar 

  20. Opdenakker G, den Steen Van, Philippe E, Van Damme J (2001) Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol 22:571–579

    Article  CAS  PubMed  Google Scholar 

  21. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim K, Klein E, Kalchenko V, Bendel P (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang B, Bailey WM, Braun KJ, Gensel JC (2015) Age decreases macrophage IL-10 expression: implications for functional recovery and tissue repair in spinal cord injury. Exp Neurol 273:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV (2015) Disc in flames: roles of TNF-alpha and IL-1beta in intervertebral disc degeneration. Eur Cell Mater 30:104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brüne B, von Knethen A, Sandau KB (1999) Nitric oxide (NO): an effector of apoptosis. Cell Death Differ 6:969–975

    Article  PubMed  Google Scholar 

  25. Satake K, Matsuyama Y, Kamiya M, Kawakami H, Iwata H, Adachi K, Kiuchi K (2000) Nitric oxide via macrophage iNOS induces apoptosis following traumatic spinal cord injury. Mol Brain Res 85:114–122

    Article  CAS  PubMed  Google Scholar 

  26. Blank U, Karlsson S (2015) TGF-beta signaling in the control of hematopoietic stem cells. Blood 125:3542–3550. doi:10.1182/blood-2014-12-618090

    Article  CAS  PubMed  Google Scholar 

  27. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Ann Rev Immunol 29:71–109

    Article  CAS  Google Scholar 

  28. Chadban SJ, Tesch GH, Foti R, Lan HY, Atkins RC, Nikolic-Paterson DJ (1998) Interleukin-10 differentially modulates MHC class II expression by mesangial cells and macrophages in vitro and in vivo. Immunology 94:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. David S, Greenhalgh A, Kroner A (2015) Macrophage and microglial plasticity in the injured spinal cord. Neuroscience 307:311–318

    Article  CAS  PubMed  Google Scholar 

  30. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lopes P, Couture R (1997) Localization of bradykinin-like immunoreactivity in the rat spinal cord: effects of capsaicin, melittin, dorsal rhizotomy and peripheral axotomy. Neuroscience 78:481–497

    Article  CAS  PubMed  Google Scholar 

  32. Wang PHM, Cenedeze MA, Pesquero JB, Pacheco-Silva A, Câmara NOS (2006) Influence of bradykinin B1 and B2 receptors in the immune response triggered by renal ischemia–reperfusion injury. Int Immunopharmacol 6:1960–1965

    Article  CAS  PubMed  Google Scholar 

  33. Gröger M, Lebesgue D, Pruneau D, Relton J, Kim S, Nussberger J, Plesnila N (2005) Release of bradykinin and expression of kinin B2 receptors in the brain: role for cell death and brain edema formation after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25:978–989

    Article  PubMed  Google Scholar 

  34. Xu J, Fan G, Chen S, Wu Y, Xu XM, Hsu CY (1998) Methylprednisolone inhibition of TNF-α expression and NF-kB activation after spinal cord injury in rats. Mol Brain Res 59:135–142

    Article  CAS  PubMed  Google Scholar 

  35. Bracken MB, Shepard MJ, Collins WF Jr, Holford TR, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon JC, Marshall LF (1992) Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data: results of the second National Acute Spinal Cord Injury Study. J Neurosurg 76:23–31

    Article  CAS  PubMed  Google Scholar 

  36. Varma AK, Das A, Wallace G, Barry J, Vertegel AA, Ray SK, Banik NL (2013) Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res 38:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Siebert JR, Conta Steencken A, Osterhout DJ (2014) Chondroitin sulfate proteoglycans in the nervous system: inhibitors to repair. Biomed Res Int 2014:845323. doi:10.1155/2014/845323

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bartus K, James ND, Didangelos A, Bosch KD, Verhaagen J, Yanez-Munoz RJ, Rogers JH, Schneider BL, Muir EM, Bradbury EJ (2014) Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J Neurosci 34:4822–4836. doi:10.1523/JNEUROSCI.4369-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wu D, Klaw MC, Connors T, Kholodilov N, Burke RE, Tom VJ (2015) Expressing constitutively active Rheb in adult neurons after a complete spinal cord injury enhances axonal regeneration beyond a Chondroitinase-treated glial scar. J Neurosci 35:11068–11080. doi:10.1523/JNEUROSCI.0719-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goldshmit Y, Kanner S, Zacs M, Frisca F, Pinto AR, Currie PD, Pinkas-Kramarski R (2015) Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury. Mol Cell Neurosci 68:82–91

    Article  CAS  PubMed  Google Scholar 

  41. Chen H, Fong T, Hsu P, Chiu W (2013) Multifaceted effects of rapamycin on functional recovery after spinal cord injury in rats through autophagy promotion, anti-inflammation, and neuroprotection. J Surg Res 179:e203–e210

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Wang G, Gao C, Shao G, Kang N (2013) Effects of hyperbaric oxygen on MMP-2 and MMP-9 expression and spinal cord edema after spinal cord injury. Life Sci 93:1033–1038

    Article  CAS  PubMed  Google Scholar 

  43. Mao L, Wang HD, Wang XL, Qiao L, Yin HX (2010) Sulforaphane attenuates matrix metalloproteinase-9 expression following spinal cord injury in mice. Ann Clin Lab Sci 40:354–360

    CAS  PubMed  Google Scholar 

  44. Wang ZM, Gao W, Wang H, Zhao D, Nie ZL, Shi JQ, Zhao S, Lu X, Wang LS, Yang ZJ (2014) Green tea polyphenol epigallocatechin-3-gallate inhibits TNF-alpha-induced production of monocyte chemoattractant protein-1 in human umbilical vein endothelial cells. Cell Physiol Biochem 33:1349–1358. doi:10.1159/000358702

    Article  CAS  PubMed  Google Scholar 

  45. Tiraihi T, Boroujeni MB, Ahmadvand H, Tavafi M, Tamjidipoor A (2010) Effects of epigallocatechin gallate on tissue protection and functional recovery after contusive spinal cord injury in rats. Brain Res 1306:168–175

    Article  PubMed  Google Scholar 

  46. Wang L, Wei F, Cen J, Ping S, Li Z, Chen N, Cui S, Wan Y, Liu S (2014) Early administration of tumor necrosis factor-alpha antagonist promotes survival of transplanted neural stem cells and axon myelination after spinal cord injury in rats. Brain Res 1575:87–100

    Article  CAS  PubMed  Google Scholar 

  47. Vidal PM, Lemmens E, Geboes L, Vangansewinkel T, Nelissen S, Hendrix S (2013) Late blocking of peripheral TNF-α is ineffective after spinal cord injury in mice. Immunobiology 218:281–284

    Article  CAS  PubMed  Google Scholar 

  48. Pan W, Kastin AJ, Gera L, Stewart JM (2001) Bradykinin antagonist decreases early disruption of the blood–spinal cord barrier after spinal cord injury in mice. Neurosci Lett 307:25–28

    Article  CAS  PubMed  Google Scholar 

  49. Su J, Cui M, Tang Y, Zhou H, Liu L, Dong Q (2009) Blockade of bradykinin B2 receptor more effectively reduces post-ischemic blood–brain barrier disruption and cytokines release than B1 receptor inhibition. Biochem Biophys Res Commun 388:205–211

    Article  CAS  PubMed  Google Scholar 

  50. Wang PHM, Cenedeze MA, Pesquero JB, Pacheco-Silva A, Câmara NOS (2006) Influence of bradykinin B1 and B2 receptors in the immune response triggered by renal ischemia–reperfusion injury. Int Immunopharmacol 6:1960–1965

    Article  CAS  PubMed  Google Scholar 

  51. Sharda DR, Yu S, Ray M, Squadrito ML, De Palma M, Wynn TA, Morris SM Jr, Hankey PA (2011) Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J Immunol 187:2181–2192. doi:10.4049/jimmunol.1003460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hofkens W, Schelbergen R, Storm G, van den Berg Wim B, van Lent PL (2013) Liposomal targeting of prednisolone phosphate to synovial lining macrophages during experimental arthritis inhibits M1 activation but does not favor M2 differentiation. PLoS ONE 8:e54016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnson WE, Baba H (2012) Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 9:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li F, Cheng B, Cheng J, Wang D, Li H, He X (2015) CCR5 blockade promotes M2 macrophage activation and improves locomotor recovery after spinal cord injury in mice. Inflammation 38:126–133

    Article  CAS  PubMed  Google Scholar 

  55. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A (2013) Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol 228:1404–1412

    Article  CAS  PubMed  Google Scholar 

  56. Zhang X, Xue H, Liu J, Song Y, Zhang J, Peng R, Chen D (2015) Combination of amniotic epithelial cells with NDGA promotes the survival of transplanted AECs in spinal cord-injured rats. Neurol Res 37:1015–1024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants R01 HL112597, R01 HL116042, and R01 HL120659 to DK Agrawal from the National Heart, Lung and Blood Institute, National Institutes of Health, USA. The content of this review article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Agrawal.

Ethics declarations

Conflict of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with financial interest or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Patil, AA. & Agrawal, D.K. Immunobiology of spinal cord injuries and potential therapeutic approaches. Mol Cell Biochem 441, 181–189 (2018). https://doi.org/10.1007/s11010-017-3184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3184-9

Keywords

Navigation