Skip to main content

Advertisement

Log in

Cardiolipin deficiency causes triacylglycerol accumulation in Saccharomyces cerevisiae

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In yeast, the synthesis of cardiolipin (CL) and phosphatidylethanolamine (PE) occurs mainly in mitochondria. CL and PE have overlapping functions, and they are required for mitochondrial function. PE is physiologically linked with triacylglycerol (TAG) metabolism in Saccharomyces cerevisiae, involving an acyl-CoA-independent pathway through the phospholipid:diacylglycerol acyltransferase activity of the Lro1 protein. There is no report on the physiological link between CL and TAG metabolism. Here we report a metabolic link between CL and TAG accumulation in the S. cerevisiae. Our data indicated that CL deficiency causes TAG accumulation, involving an acyl-CoA-dependent pathway through the diacylglycerol acyltransferase activity of the Dga1 protein with no changes in the TAG molecular species. The DGA1 gene deletion from the CL-deficient strains reduced the TAG levels. Data from in vitro and in vivo analyses showed that CL did not affect the enzymatic activity of Dga1. Our data also showed that CL deficiency leads to the up-regulation of acetyl-CoA synthetase genes (ACS1 and ACS2) of the cytosolic pyruvate dehydrogenase bypass pathway. This study establishes a physiological link between CL and TAG metabolism in S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Claypool SM, Koehler CM (2012) The complexity of cardiolipin in health and disease. Trends Biochem Sci 37:32–41. doi:10.1016/j.tibs.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  2. Schuiki I, Daum G (2009) Phosphatidylserine decarboxylases, key enzymes of lipid metabolism. IUBMB Life 61:151–162. doi:10.1002/iub.159

    Article  CAS  PubMed  Google Scholar 

  3. Joshi AS, Thompson MN, Fei N, Huttemann M, Greenberg ML (2012) Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem 287:17589–17597. doi:10.1074/jbc.M111.330167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gohil VM, Thompson MN, Greenberg ML (2005) Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae. J Biol Chem 280:35410–35416. doi:10.1074/jbc.M505478200

    Article  CAS  PubMed  Google Scholar 

  5. Beyer K, Klingenberg M (1985) ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 24:3821–3826

    Article  CAS  PubMed  Google Scholar 

  6. Lange C, Nett JH, Trumpower BL, Hunte C (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 20:6591–6600. doi:10.1093/emboj/20.23.6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M, Pfanner N, Greenberg ML (2000) Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 275:22387–22394. doi:10.1074/jbc.M909868199

    Article  CAS  PubMed  Google Scholar 

  8. Beranek A, Rechberger G, Knauer H, Wolinski H, Kohlwein SD, Leber R (2009) Identification of a cardiolipin-specific phospholipase encoded by the gene CLD1 (YGR110W) in yeast. J Biol Chem 284:11572–11578. doi:10.1074/jbc.M805511200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Osman C, Haag M, Wieland FT, Brugger B, Langer T (2010) A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J 29:1976–1987. doi:10.1038/emboj.2010.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ye C, Lou W, Li Y, Chatzispyrou IA, Huttemann M, Lee I, Houtkooper RH, Vaz FM, Chen S, Greenberg ML (2014) Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and life span defects in the tafazzin mutant: implications for Barth syndrome. J Biol Chem 289:3114–3125. doi:10.1074/jbc.M113.529487

    Article  CAS  PubMed  Google Scholar 

  11. Lee SJ, Zhang J, Choi AM, Kim HP (2013) Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress. Oxid Med Cell Longev 2013:327167. doi:10.1155/2013/327167

    PubMed  PubMed Central  Google Scholar 

  12. Zweytick D, Athenstaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469:101–120

    Article  CAS  PubMed  Google Scholar 

  13. Farese RV Jr, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860. doi:10.1016/j.cell.2009.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  CAS  PubMed  Google Scholar 

  15. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–44512. doi:10.1074/jbc.M207712200

    Article  CAS  PubMed  Google Scholar 

  16. Frohman MA (2015) Role of mitochondrial lipids in guiding fission and fusion. J Mol Med (Berl) 93:263–269. doi:10.1007/s00109-014-1237-z

    Article  CAS  Google Scholar 

  17. Horvath SE, Wagner A, Steyrer E, Daum G (2011) Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1811:1030–1037. doi:10.1016/j.bbalip.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yadav PK, Rajasekharan R (2016) Misregulation of a DDHD domain-containing lipase causes mitochondrial dysfunction in yeast. J Biol Chem 291:18562–18581. doi:10.1074/jbc.M116.733378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yadav KK, Singh N, Rajasekharan R (2015) PHO4 transcription factor regulates triacylglycerol metabolism under low-phosphate conditions in Saccharomyces cerevisiae. Mol Microbiol 98:456–472. doi:10.1111/mmi.13133

    Article  CAS  PubMed  Google Scholar 

  20. Tamura Y, Onguka O, Hobbs AE, Jensen RE, Iijima M, Claypool SM, Sesaki H (2012) Role for two conserved intermembrane space proteins, Ups1p and Ups2p, [corrected] in intra-mitochondrial phospholipid trafficking. J Biol Chem 287:15205–15218. doi:10.1074/jbc.M111.338665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301

    Article  CAS  PubMed  Google Scholar 

  22. Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont ME, Phizicky EM, Snyder M, Grayhack EJ (2005) Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 19:2816–2826. doi:10.1101/gad.1362105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  CAS  PubMed  Google Scholar 

  24. Huang H, Taraboletti A, Shriver LP (2015) Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes. Redox Biol 5:169–175. doi:10.1016/j.redox.2015.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simons B, Kauhanen D, Sylvanne T, Tarasov K, Duchoslav E, Ekroos K (2012) Shotgun lipidomics by sequential precursor ion fragmentation on a hybrid quadrupole time-of-flight mass spectrometer. Metabolites 2:195–213. doi:10.3390/metabo2010195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492. doi:10.1073/pnas.120067297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277:8877–8881. doi:10.1074/jbc.M111646200

    Article  CAS  PubMed  Google Scholar 

  28. Kuroda T, Tani M, Moriguchi A, Tokunaga S, Higuchi T, Kitada S, Kuge O (2011) FMP30 is required for the maintenance of a normal cardiolipin level and mitochondrial morphology in the absence of mitochondrial phosphatidylethanolamine synthesis. Mol Microbiol 80:248–265. doi:10.1111/j.1365-2958.2011.07569.x

    Article  CAS  PubMed  Google Scholar 

  29. Boubekeur S, Bunoust O, Camougrand N, Castroviejo M, Rigoulet M, Guerin B (1999) A mitochondrial pyruvate dehydrogenase bypass in the yeast Saccharomyces cerevisiae. J Biol Chem 274:21044–21048

    Article  CAS  PubMed  Google Scholar 

  30. Johnston M (1999) Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends Genet 15:29–33

    Article  CAS  PubMed  Google Scholar 

  31. Patil VA, Fox JL, Gohil VM, Winge DR, Greenberg ML (2013) Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis. J Biol Chem 288:1696–1705. doi:10.1074/jbc.M112.428938

    Article  CAS  PubMed  Google Scholar 

  32. Gohil VM, Hayes P, Matsuyama S, Schagger H, Schlame M, Greenberg ML (2004) Cardiolipin biosynthesis and mitochondrial respiratory chain function are interdependent. J Biol Chem 279:42612–42618. doi:10.1074/jbc.M402545200

    Article  CAS  PubMed  Google Scholar 

  33. Zhong Q, Li G, Gvozdenovic-Jeremic J, Greenberg ML (2007) Up-regulation of the cell integrity pathway in saccharomyces cerevisiae suppresses temperature sensitivity of the pgs1∆ mutant. J Biol Chem 282:15946–15953. doi:10.1074/jbc.M701055200

    Article  CAS  PubMed  Google Scholar 

  34. Chen S, Tarsio M, Kane PM, Greenberg ML (2008) Cardiolipin mediates cross-talk between mitochondria and the vacuole. Mol Biol Cell 19:5047–5058. doi:10.1091/mbc.E08-05-0486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou J, Zhong Q, Li G, Greenberg ML (2009) Loss of cardiolipin leads to longevity defects that are alleviated by alterations in stress response signaling. J Biol Chem 284:18106–18114. doi:10.1074/jbc.M109.003236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen S, Liu D, Finley RL Jr, Greenberg ML (2010) Loss of mitochondrial DNA in the yeast cardiolipin synthase crd1 mutant leads to up-regulation of the protein kinase Swe1p that regulates the G2/M transition. J Biol Chem 285:10397–10407. doi:10.1074/jbc.M110.100784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gonzalvez F, Gottlieb E (2007) Cardiolipin: setting the beat of apoptosis. Apoptosis 12:877–885. doi:10.1007/s10495-007-0718-8

    Article  CAS  PubMed  Google Scholar 

  38. Schug ZT, Gottlieb E (2009) Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta 1788:2022–2031. doi:10.1016/j.bbamem.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  39. Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, Ingolic E, Daum G (2008) Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem 283:17065–17074. doi:10.1074/jbc.M800401200

    Article  CAS  PubMed  Google Scholar 

  40. Novikoff AB, Novikoff PM, Rosen OM, Rubin CS (1980) Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 87:180–196

    Article  CAS  PubMed  Google Scholar 

  41. Pu J, Ha CW, Zhang S, Jung JP, Huh WK, Liu P (2011) Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell 2:487–496. doi:10.1007/s13238-011-1061-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shaw CS, Jones DA, Wagenmakers AJ (2008) Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 129:65–72. doi:10.1007/s00418-007-0349-8

    Article  CAS  PubMed  Google Scholar 

  43. Petschnigg J, Wolinski H, Kolb D, Zellnig G, Kurat CF, Natter K, Kohlwein SD (2009) Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J Biol Chem 284:30981–30993. doi:10.1074/jbc.M109.024752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643. doi:10.1038/35007508

    CAS  PubMed  Google Scholar 

  45. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–3082. doi:10.1073/pnas.0630588100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, under the 12th 5-year plan project LIPIC. P.K.Y. was supported by a fellowship from CSIR, New Delhi. The corresponding author is a recipient of the JC Bose National Fellowship. We are thankful to Prof. Vasanthi Nachiappan of the Department of Biochemistry at Bharathidasan University in India for providing the pUG34 vector. We are grateful to the Department of Biochemistry of the Indian Institute of Science in Bangalore for extending their facility for the radioactive study.

Author information

Authors and Affiliations

Authors

Contributions

RR conceived and initiated the project. RR and PKY designed the experiments. PKY executed the experiments and analyzed the data. PKY and RR discussed the data and wrote the paper.

Corresponding author

Correspondence to Ram Rajasekharan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Rajasekharan, R. Cardiolipin deficiency causes triacylglycerol accumulation in Saccharomyces cerevisiae . Mol Cell Biochem 434, 89–103 (2017). https://doi.org/10.1007/s11010-017-3039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3039-4

Keywords

Navigation