Skip to main content
Log in

Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guglin M, Khan H (2010) Pulmonary hypertension in heart failure. J Card Fail 16:461–474. doi:10.1016/j.cardfail.2010.01.003

    Article  PubMed  Google Scholar 

  2. Raiesdana A, Loscalzo J (2006) Pulmonary arterial hypertension. Ann Med 38:95–110. doi:10.1080/07853890600622143

    Article  CAS  PubMed  Google Scholar 

  3. Chin KM, Rubin LJ (2008) Pulmonary arterial hypertension. J Am Coll Cardiol 51:1527–1538. doi:10.1016/j.jacc.2008.01.024

    Article  PubMed  Google Scholar 

  4. Demarco VG, Whaley-Connell AT, Sowers JR et al (2010) Contribution of oxidative stress to pulmonary arterial hypertension. World J Cardiol 2:316–324. doi:10.4330/wjc.v2.i10.316

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mosele F, Tavares AM V, Colombo R et al (2012) Effects of purple grape juice in the redox-sensitive modulation of right ventricular remodeling in a pulmonary arterial hypertension model. J Cardiovasc Pharmacol 60:15–22. doi:10.1097/FJC.0b013e3182550fd6

    Article  CAS  PubMed  Google Scholar 

  6. Haider N, Narula N, Narula J (2002) Apoptosis in heart failure represents programmed cell survival, not death, of cardiomyocytes and likelihood of reverse remodeling. J Card Fail 8:S512–S517. doi:10.1054/jcaf.2002.130034

    Article  PubMed  Google Scholar 

  7. Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92:139–150. doi:10.1161/01.RES.0000053618.86362.DF

    Article  CAS  PubMed  Google Scholar 

  8. Tabima DM, Frizzell S, Gladwin MT (2012) Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med 52:1970–1986. doi:10.1016/j.freeradbiomed.2012.02.041

    Article  CAS  PubMed  Google Scholar 

  9. Wolin MS, Ahmad M, Gupte SA (2005) The sources of oxidative stress in the vessel wall. Kidney Int 67(5):1659–1661

    Article  CAS  PubMed  Google Scholar 

  10. Leach RM, Hill HM, Snetkov VA et al (2001) Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: Identity of the hypoxic sensor. J Physiol 536:211–224. doi:10.1111/j.1469-7793.2001.00211.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weissmann N, Ebert N, Ahrens M et al (2003) Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs. Am J Respir Cell Mol Biol 29:721–732. doi:10.1165/rcmb.2002-0217OC

    Article  CAS  PubMed  Google Scholar 

  12. Ludke ARL, Mosele F, Caron-Lienert R et al (2010) Modulation of monocrotaline-induced cor pulmonale by grape juice. J Cardiovasc Pharmacol 55:89–95. doi:10.1097/FJC.0b013e3181c87a9d

    Article  CAS  PubMed  Google Scholar 

  13. Farahmand F, Hill MF, Singal PK (2004) Antioxidant and oxidative stress changes in experimental cor pulmonale. Mol Cell Biochem 260:21–29. doi:10.1023/B:MCBI.0000026047.48534.50

    Article  PubMed  Google Scholar 

  14. Jasmin J-F, Cernacek P, Dupuis J (2003) Activation of the right ventricular endothelin (ET) system in the monocrotaline model of pulmonary hypertension: response to chronic ETA receptor blockade. Clin Sci 105:647–653. doi:10.1042/CS20030139

    Article  CAS  PubMed  Google Scholar 

  15. Pichardo J, Palace V, Farahmand F, Singal PK (1999) Myocardial oxidative stress changes during compensated right heart failure in rats. Mol Cell Biochem 196:51–57. doi:10.1023/A:1006914111957

    Article  CAS  PubMed  Google Scholar 

  16. Prasad K (2009) Flaxseed and cardiovascular health. J Cardiovasc Pharmacol 54:369–377. doi:10.1097/FJC.0b013e3181af04e5

    Article  CAS  PubMed  Google Scholar 

  17. Westcott ND, Muir AD (1998) Process for extracting lignans from flaxseed Patent #5705618 USA

  18. Prasad K (2000) Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG). Mol Cell Biochem 209:89–96. doi:10.1023/A:1007079802459

    Article  CAS  PubMed  Google Scholar 

  19. Moree SS, Kavishankar GB, Rajesha J (2013) Antidiabetic effect of secoisolariciresinol diglucoside in streptozotocin-induced diabetic rats. Phytomedicine 20:237–245. doi:10.1016/j.phymed.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  20. Prasad K, Mantha SV, Muir AD, Westcott ND (2000) Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol Cell Biochem 206:141–149. PMID: 10839204

    Article  CAS  PubMed  Google Scholar 

  21. Prasad K (2001) Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. J Lab Clin Med 138:32–39. doi:10.1067/mlc.2001.115717

    Article  CAS  PubMed  Google Scholar 

  22. Prasad K (2008) Regression of hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Atherosclerosis 197:34–42. doi:10.1016/j.atherosclerosis.2007.07.043

    Article  CAS  PubMed  Google Scholar 

  23. Penumathsa SV, Koneru S, Zhan L et al (2008) Secoisolariciresinol diglucoside induces neovascularization-mediated cardioprotection against ischemia-reperfusion injury in hypercholesterolemic myocardium. J Mol Cell Cardiol 44:170–179. doi:10.1016/j.yjmcc.2007.09.014

    Article  CAS  PubMed  Google Scholar 

  24. Penumathsa SV, Koneru S, Thirunavukkarasu M et al (2007) Secoisolariciresinol diglucoside: relevance to angiogenesis and cardioprotection against ischemia-reperfusion injury. J Pharmacol Exp Ther 320:951–959. doi:10.1124/jpet.106.114165

    Article  CAS  PubMed  Google Scholar 

  25. Puukila S, Bryan S, Laakso A et al (2015) Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition. PLoS One 10:e0122852. doi:10.1371/journal.pone.0122852

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. PMID: 14907713

  27. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231. doi:10.1021/tx00026a012

    Article  CAS  PubMed  Google Scholar 

  28. Castro AL de, Tavares AV, Fernandes RO et al (2015) T3 and T4 decrease ROS levels and increase endothelial nitric oxide synthase expression in the myocardium of infarcted rats. Mol Cell Biochem 408:235–243. doi:10.1007/s11010-015-2501-4

    Article  PubMed  Google Scholar 

  29. Gonzalez Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100. PMID: 1849867

    Article  CAS  PubMed  Google Scholar 

  30. Claiborne A (1985) Catalase activity. In: Greenwald R (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, p 283–284

    Google Scholar 

  31. Marklund S (1985) Pyrogallol autooxidation. In: Greenwald R (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, p 243–247

    Google Scholar 

  32. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169. PMID: 6066618

    CAS  PubMed  Google Scholar 

  33. Potus F, Ruffenach G, Dahou A et al (2015) Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 132:932–943. doi:10.1161/CIRCULATIONAHA.115.016382

    Article  CAS  PubMed  Google Scholar 

  34. Colombo R, Siqueira R, Becker CU et al (2013) Effects of exercise on monocrotaline-induced changes in right heart function and pulmonary artery remodeling in rats. Can J Physiol Pharmacol 91:38–44. doi:10.1139/cjpp-2012-0261

    Article  CAS  PubMed  Google Scholar 

  35. Colombo R, Siqueira R, Conzatti A et al (2015) Aerobic exercise promotes a decrease in right ventricle apoptotic proteins in experimental cor pulmonale. J Cardiovasc Pharmacol 66:246–253. doi:10.1097/FJC.0000000000000272

    Article  CAS  PubMed  Google Scholar 

  36. Goncalves DM, Ferreira R, Fonseca H (2015) Cardioprotective effects of early and late aerobic exercise in experimental pulmonary arterial hypertension. Basic Res Cardiol 110(6):57. doi:10.1007/s00395-015-0514-5.

    Article  PubMed  Google Scholar 

  37. Khaper N., Bryan S, Dhingra S, et al (2010) Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Signal 13:1033–1049. doi:10.1089/ars.2009.2930.

    Article  CAS  PubMed  Google Scholar 

  38. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907. doi:10.1136/hrt.2005.068270

    Article  CAS  PubMed  Google Scholar 

  39. Giordano F (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508. doi:10.1172/JCI200524408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmidt HW, Stocker R, Vollbracht C et al (2015) Antioxidants in translational medicine. Antioxid Redox Signal. doi:10.1089/ars.2015.6393

    Google Scholar 

  41. Mosele F, Tavares AV, Colombo R et al (2012) Effects of purple grape juice in the redox-sensitive modulation of right ventricular remodeling in a pulmonary arterial hypertension model. J Cardiovasc Pharmacol 60:15–22. doi:10.1097/FJC.0b013e3182550fd6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Rayane B. Teixeira, Denise S. Lacerda, Vanessa D. Ortiz, Giana B. Corssac, Dalvana D. Muller, Tania G. Fernandes, and Ana Lucia Hoefel for their technical assistance. Funding from the Canada-Brazil Awards—Joint Research Projects funded by CAPES (Brazilian Government) and the Government of Canada through Foreign Affairs, Trade and Development Canada is greatly acknowledged. SDG was kindly provided by Dr. K. Prasad from the University of Saskatchewan, Canada. S. Puukila was supported by research funding from Bruce Power and NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Khaper.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puukila, S., Fernandes, R.O., Türck, P. et al. Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction. Mol Cell Biochem 432, 33–39 (2017). https://doi.org/10.1007/s11010-017-2995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-2995-z

Keywords

Navigation