Skip to main content

Advertisement

Log in

Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

A Correction to this article was published on 24 January 2018

This article has been updated

Abstract

In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, l-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 24 January 2018

    In the original publication of the article, last author’s name was misspelt. The correct name is given here.

References

  1. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115(10):1285–1295. doi:10.1161/CIRCULATIONAHA.106.652859

    PubMed  Google Scholar 

  2. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    Article  CAS  PubMed  Google Scholar 

  3. Hanley AJ, Williams K, Stern MP, Haffner SM (2002) Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care 25(7):1177–1184

    Article  PubMed  Google Scholar 

  4. Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M (2006) Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest 116(4):1071–1080. doi:10.1172/JCI23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Manganiello VC, Degerman E, Taira M, Kono T, Belfrage P (1996) Type III cyclic nucleotide phosphodiesterases and insulin action. Curr Top Cell Regul 34:63–100

    Article  CAS  PubMed  Google Scholar 

  6. Moule SK, Denton RM (1997) Multiple signaling pathways involved in the metabolic effects of insulin. Am J Cardiol 80(3A): 41A-49A

    PubMed  Google Scholar 

  7. Eleftheriadis T, Tsogka K, Pissas G, Antoniadi G, Liakopoulos V, Stefanidis I (2016) Activation of general control nonderepressible 2 kinase protects human glomerular endothelial cells from harmful high-glucose-induced molecular pathways. Int Urol Nephrol. doi:10.1007/s11255-016-1377-x

    Google Scholar 

  8. Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E (2014) Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta 1843(9):1948–1968. doi:10.1016/j.bbamcr.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  9. Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Munzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD (2014) FGF21 is an endocrine signal of protein restriction. J Clin Invest 124(9):3913–3922. doi:10.1172/JCI74915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eleftheriadis T, Pissas G, Sounidaki M, Tsogka K, Antoniadis N, Antoniadi G, Liakopoulos V, Stefanidis I (2016) Indoleamine 2,3-dioxygenase, by degrading L-tryptophan, enhances carnitine palmitoyltransferase I activity and fatty acid oxidation, and exerts fatty acid-dependent effects in human alloreactive CD4+ T-cells. Int J Mol Med. doi:10.3892/ijmm.2016.2750

    Google Scholar 

  11. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258. doi:10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

  12. Schreurs M, Kuipers F, van der Leij FR (2010) Regulatory enzymes of mitochondrial beta-oxidation as targets for treatment of the metabolic syndrome. Obes Rev 11(5):380–388. doi:10.1111/j.1467-789X.2009.00642.x

    Article  CAS  PubMed  Google Scholar 

  13. Nagel T, Resnick N, Atkinson WJ, Dewey CF Jr, Gimbrone MA Jr (1994) Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest 94(2):885–891. doi:10.1172/JCI117410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li H, Cybulsky MI, Gimbrone MA, Jr., Libby P (1993) An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 13 (2):197–204

    Article  PubMed  Google Scholar 

  15. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107(10):1255–1262. doi:10.1172/JCI11871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dernovsek KD, Bar RS, Ginsberg BH, Lioubin MN (1984) Rapid transport of biologically intact insulin through cultured endothelial cells. J Clin Endocrinol Metab 58(4):761–763. doi:10.1210/jcem-58-4-761

    Article  CAS  PubMed  Google Scholar 

  17. Baron AD (1994) Hemodynamic actions of insulin. Am J Physiol 267(2 Pt 1):E187–E202

    CAS  PubMed  Google Scholar 

  18. Jiang ZY, Lin YW, Clemont A, Feener EP, Hein KD, Igarashi M, Yamauchi T, White MF, King GL (1999) Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 104(4):447–457. doi:10.1172/JCI5971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Price PJ, Gregory EA (1982) Relationship between in vitro growth promotion and biophysical and biochemical properties of the serum supplement. In Vitro 18 (6):576–584

    Article  CAS  PubMed  Google Scholar 

  20. Chevenne D, Trivin F, Porquet D (1999) Insulin assays and reference values. Diabetes Metab 25(6):459–476

    CAS  PubMed  Google Scholar 

  21. Staiger K, Staiger H, Weigert C, Haas C, Haring HU, Kellerer M (2006) Saturated, but not unsaturated, fatty acids induce apoptosis of human coronary artery endothelial cells via nuclear factor-kappaB activation. Diabetes 55(11):3121–3126. doi:10.2337/db06-0188

    Article  CAS  PubMed  Google Scholar 

  22. Ellenbogen MA, Young SN, Dean P, Palmour RM, Benkelfat C (1996) Mood response to acute tryptophan depletion in healthy volunteers: sex differences and temporal stability. Neuropsychopharmacology 15(5):465–474. doi:10.1016/S0893-133X(96)00056-5

    Article  CAS  PubMed  Google Scholar 

  23. Nakagomi A, Kohashi K, Morisawa T, Kosugi M, Endoh I, Kusama Y, Atarashi H, Shimizu W (2016) Nutritional status is associated with inflammation and predicts a poor outcome in patients with chronic heart failure. J Atheroscler Thromb 23(6):713–727. doi:10.5551/jat.31526

    Article  CAS  PubMed  Google Scholar 

  24. Courand PY, Lesiuk C, Milon H, Defforges A, Fouque D, Harbaoui B, Lantelme P (2016) Association between protein intake and mortality in hypertensive patients without chronic kidney disease in the OLD-HTA cohort. Hypertension 67(6):1142–1149. doi:10.1161/HYPERTENSIONAHA.116.07409

    Article  CAS  PubMed  Google Scholar 

  25. Murr C, Grammer TB, Kleber ME, Meinitzer A, Marz W, Fuchs D (2015) Low serum tryptophan predicts higher mortality in cardiovascular disease. Eur J Clin Invest 45(3):247–254. doi:10.1111/eci.12402

    Article  CAS  PubMed  Google Scholar 

  26. Breum L, Rasmussen MH, Hilsted J, Fernstrom JD (2003) Twenty-four-hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction. Am J Clin Nutr 77(5):1112–1118

    CAS  PubMed  Google Scholar 

  27. Herrera-Marquez R, Hernandez-Rodriguez J, Medina-Serrano J, Boyzo-Montes de Oca A, Manjarrez-Gutierrez G (2011) Association of metabolic syndrome with reduced central serotonergic activity. Metab Brain Dis 26(1):29–35. doi:10.1007/s11011-010-9229-3

    Article  CAS  PubMed  Google Scholar 

  28. Haffner SM (2006) The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol 97(2A):3A–11A. doi:10.1016/j.amjcard.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  29. King NJ, Thomas SR (2007) Molecules in focus: indoleamine 2,3-dioxygenase. Int J Biochem Cell Biol 39(12):2167–2172. doi:10.1016/j.biocel.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  30. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22(5):633–642. doi:10.1016/j.immuni.2005.03.013

    Article  CAS  PubMed  Google Scholar 

  31. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198. doi:10.4049/jimmunol.0903670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Stefanidis I (2016) Kynurenine, by activating aryl hydrocarbon receptor, decreases erythropoietin and increases hepcidin production in HepG2 cells: a new mechanism for anemia of inflammation. Exp Hematol 44(1):60–67. doi:10.1016/j.exphem.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  33. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478(7368):197–203. doi:10.1038/nature10491

    Article  CAS  PubMed  Google Scholar 

  34. Schrocksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364(1–2):82–90. doi:10.1016/j.cca.2005.06.013

    Article  PubMed  Google Scholar 

  35. Eleftheriadis T, Antoniadi G, Liakopoulos V, Stefanidis I, Galaktidou G (2012) Plasma indoleamine 2,3-dioxygenase concentration is increased in hemodialysis patients and may contribute to the pathogenesis of coronary heart disease. Ren Fail 34(1):68–72. doi:10.3109/0886022X.2011.623562

    Article  CAS  PubMed  Google Scholar 

  36. Shoenfeld Y, Gerli R, Doria A, Matsuura E, Cerinic MM, Ronda N, Jara LJ, Abu-Shakra M, Meroni PL, Sherer Y (2005) Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation 112(21):3337–3347. doi:10.1161/CIRCULATIONAHA.104.507996

    Article  PubMed  Google Scholar 

  37. Morganti M, Carpi A, Nicolini A, Gorini I, Glaviano B, Fini M, Giavaresi G, Mittermayer C, Giardino R (2002) Atherosclerosis and cancer: common pathways on the vascular endothelium. Biomed Pharmacother 56(7):317–324

    Article  CAS  PubMed  Google Scholar 

  38. Parfrey PS, Foley RN (1999) The clinical epidemiology of cardiac disease in chronic renal failure. J Am Soc Nephrol 10(7):1606–1615

    CAS  PubMed  Google Scholar 

  39. Pereira RM, de Carvalho JF, Bonfa E (2009) Metabolic syndrome in rheumatological diseases. Autoimmun Rev 8(5):415–419. doi:10.1016/j.autrev.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  40. Inoue M, Tsugane S (2012) Insulin resistance and cancer: epidemiological evidence. Endocr Relat Cancer 19 (5):F1-8. doi:10.1530/ERC-12-0142

    Google Scholar 

  41. Hung AM, Ikizler TA (2011) Factors determining insulin resistance in chronic hemodialysis patients. Contrib Nephrol 171:127–134. doi:10.1159/000327177

    Article  CAS  PubMed  Google Scholar 

  42. Bieber LL, Fiol C (1986) Purification and assay of carnitine acyltransferases. Methods Enzymol 123:276–284

    Article  CAS  PubMed  Google Scholar 

  43. Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258(6):479–517. doi:10.1111/j.1365-2796.2005.01570.x

    Article  CAS  PubMed  Google Scholar 

  44. Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Tsogka K, Sounidaki M, Stefanidis I (2016) Differential effects of the two amino acid sensing systems, the GCN2 kinase and the mTOR complex 1, on primary human alloreactive CD4(+) T-cells. Int J Mol Med 37(5):1412–1420. doi:10.3892/ijmm.2016.2547

    Article  CAS  PubMed  Google Scholar 

  45. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122 (Pt 20):3589–3594. doi:10.1242/jcs.051011

    PubMed  PubMed Central  Google Scholar 

  46. Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449(1):1–10. doi:10.1042/BJ20121098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim SH, Henry EC, Kim DK, Kim YH, Shin KJ, Han MS, Lee TG, Kang JK, Gasiewicz TA, Ryu SH, Suh PG (2006) Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol Pharmacol 69(6):1871–1878. doi:10.1124/mol.105.021832

    Article  CAS  PubMed  Google Scholar 

  48. Sulo G, Vollset SE, Nygard O, Midttun O, Ueland PM, Eussen SJ, Pedersen ER, Tell GS (2013) Neopterin and kynurenine-tryptophan ratio as predictors of coronary events in older adults, the Hordaland Health Study. Int J Cardiol 168(2):1435–1440. doi:10.1016/j.ijcard.2012.12.090

    Article  PubMed  Google Scholar 

  49. Pertovaara M, Raitala A, Juonala M, Lehtimaki T, Huhtala H, Oja SS, Jokinen E, Viikari JS, Raitakari OT, Hurme M (2007) Indoleamine 2,3-dioxygenase enzyme activity correlates with risk factors for atherosclerosis: the cardiovascular risk in Young Finns Study. Clin Exp Immunol 148(1):106–111. doi:10.1111/j.1365-2249.2007.03325.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pedersen ER, Tuseth N, Eussen SJ, Ueland PM, Strand E, Svingen GF, Midttun O, Meyer K, Mellgren G, Ulvik A, Nordrehaug JE, Nilsen DW, Nygard O (2015) Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol 35(2):455–462. doi:10.1161/ATVBAHA.114.304674

    Article  CAS  PubMed  Google Scholar 

  51. Niinisalo P, Oksala N, Levula M, Pelto-Huikko M, Jarvinen O, Salenius JP, Kytomaki L, Soini JT, Kahonen M, Laaksonen R, Hurme M, Lehtimaki T (2010) Activation of indoleamine 2,3-dioxygenase-induced tryptophan degradation in advanced atherosclerotic plaques: Tampere vascular study. Ann Med 42(1):55–63. doi:10.3109/07853890903321559

    Article  CAS  PubMed  Google Scholar 

  52. Cole JE, Astola N, Cribbs AP, Goddard ME, Park I, Green P, Davies AH, Williams RO, Feldmann M, Monaco C (2015) Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. Proc Natl Acad Sci U S A 112(42):13033–13038. doi:10.1073/pnas.1517820112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Polyzos KA, Ovchinnikova O, Berg M, Baumgartner R, Agardh H, Pirault J, Gistera A, Assinger A, Laguna-Fernandez A, Back M, Hansson GK, Ketelhuth DF (2015) Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoe-/- mice. Cardiovasc Res 106(2):295–302. doi:10.1093/cvr/cvv100

    Article  CAS  PubMed  Google Scholar 

  54. Pae HO, Oh GS, Lee BS, Rim JS, Kim YM, Chung HT (2006) 3-Hydroxyanthranilic acid, one of L-tryptophan metabolites, inhibits monocyte chemoattractant protein-1 secretion and vascular cell adhesion molecule-1 expression via heme oxygenase-1 induction in human umbilical vein endothelial cells. Atherosclerosis 187(2):274–284. doi:10.1016/j.atherosclerosis.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  55. Yun TJ, Lee JS, Machmach K, Shim D, Choi J, Wi YJ, Jang HS, Jung IH, Kim K, Yoon WK, Miah MA, Li B, Chang J, Bego MG, Pham TN, Loschko J, Fritz JH, Krug AB, Lee SP, Keler T, Guimond JV, Haddad E, Cohen EA, Sirois MG, El-Hamamsy I, Colonna M, Oh GT, Choi JH, Cheong C (2016) Indoleamine 2,3-dioxygenase-expressing aortic plasmacytoid dendritic cells protect against atherosclerosis by induction of regulatory T cells. Cell Metab 23(5):852–866. doi:10.1016/j.cmet.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  56. Humblet O, Birnbaum L, Rimm E, Mittleman MA, Hauser R (2008) Dioxins and cardiovascular disease mortality. Environ Health Perspect 116(11):1443–1448. doi:10.1289/ehp.11579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Panchanathan R, Liu H, Choubey D (2015) Activation of p53 in human and murine cells by DNA-damaging agents differentially regulates aryl hydrocarbon receptor levels. Int J Toxicol 34(3):242–249. doi:10.1177/1091581815578013

    Article  CAS  PubMed  Google Scholar 

  58. Suliman ME, Qureshi AR, Stenvinkel P, Pecoits-Filho R, Barany P, Heimburger O, Anderstam B, Rodriguez Ayala E, Divino Filho JC, Alvestrand A, Lindholm B (2005) Inflammation contributes to low plasma amino acid concentrations in patients with chronic kidney disease. Am J Clin Nutr 82(2):342–349

    CAS  PubMed  Google Scholar 

  59. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108(9):1341–1348. doi:10.1172/JCI11235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. de Souza AR, Zago M, Eidelman DH, Hamid Q, Baglole CJ (2014) Aryl hydrocarbon receptor (AhR) attenuation of subchronic cigarette smoke-induced pulmonary neutrophilia is associated with retention of nuclear RelB and suppression of intercellular adhesion molecule-1 (ICAM-1). Toxicol Sci 140(1):204–223. doi:10.1093/toxsci/kfu068

    Article  PubMed  Google Scholar 

  61. Sallee M, Dou L, Cerini C, Poitevin S, Brunet P, Burtey S (2014) The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins (Basel) 6(3):934–949. doi:10.3390/toxins6030934

    Article  CAS  Google Scholar 

  62. Gorgoulis VG, Pratsinis H, Zacharatos P, Demoliou C, Sigala F, Asimacopoulos PJ, Papavassiliou AG, Kletsas D (2005) p53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab Invest 85(4):502–511. doi:10.1038/labinvest.3700241

    Article  CAS  PubMed  Google Scholar 

  63. Qin W, Lu Y, Zhan C, Shen T, Dou L, Man Y, Wang S, Xiao C, Bian Y, Li J (2012) Simvastatin suppresses apoptosis in vulnerable atherosclerotic plaques through regulating the expression of p(53), Bcl-2 and Bcl-xL. Cardiovasc Drugs Ther 26(1):23–30. doi:10.1007/s10557-011-6347-z

    Article  PubMed  Google Scholar 

  64. Chen W, Wang F, Li Z, Huang X, Wang N, Dong Z, Sun P (2009) p53 Levels positively correlate with carotid intima-media thickness in patients with subclinical atherosclerosis. Clin Cardiol 32(12):705–710. doi:10.1002/clc.20639

    Article  PubMed  Google Scholar 

  65. Eleftheriadis T, Pissas G, Antoniadi G, Spanoulis A, Liakopoulos V, Stefanidis I (2014) Indoleamine 2,3-dioxygenase increases p53 levels in alloreactive human T cells, and both indoleamine 2,3-dioxygenase and p53 suppress glucose uptake, glycolysis and proliferation. Int Immunol 26(12):673–684. doi:10.1093/intimm/dxu077

    Article  CAS  PubMed  Google Scholar 

  66. Kwon NH, Kang T, Lee JY, Kim HH, Kim HR, Hong J, Oh YS, Han JM, Ku MJ, Lee SY, Kim S (2011) Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc Natl Acad Sci USA 108(49):19635–19640. doi:10.1073/pnas.1103922108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023. doi:10.1038/ncb2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wahlang B, Falkner KC, Gregory B, Ansert D, Young D, Conklin DJ, Bhatnagar A, McClain CJ, Cave M (2013) Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice. J Nutr Biochem 24(9):1587–1595. doi:10.1016/j.jnutbio.2013.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanchez-Macedo N, Feng J, Faubert B, Chang N, Elia A, Rushing EJ, Tsuchihara K, Bungard D, Berger SL, Jones RG, Mak TW, Zaugg K (2013) Depletion of the novel p53-target gene carnitine palmitoyltransferase 1 C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death Differ 20(4):659–668. doi:10.1038/cdd.2012.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Eleftheriadis.

Ethics declarations

Disclosures

None.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11010-018-3277-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleftheriadis, T., Pissas, G., Sounidaki, M. et al. Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways. Mol Cell Biochem 428, 41–56 (2017). https://doi.org/10.1007/s11010-016-2915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2915-7

Keywords

Navigation