Skip to main content

Advertisement

Log in

Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

PIWI subfamily of proteins is shown to be primarily expressed in germline cells. They maintain the genomic integrity by silencing the transposable elements. Although the role of PIWI proteins in germ cells has been documented, their presence and function in somatic cells remains unclear. Intriguingly, we detected all four members of PIWI-like proteins in human ocular tissues and somatic cell lines. When HIWI2 was knocked down in retinal pigment epithelial cells, the typical honeycomb morphology was affected. Further analysis showed that the expression of tight junction (TJ) proteins, CLDN1, and TJP1 were altered in HIWI2 knockdown. Moreover, confocal imaging revealed disrupted TJP1 assembly at the TJ. Previous studies report the role of GSK3β in regulating TJ proteins. Accordingly, phospho-kinase proteome profiler array indicated increased phosphorylation of Akt and GSK3α/β in HIWI2 knockdown, suggesting that HIWI2 might affect TJ proteins through Akt-GSK3α/β signaling axis. Moreover, treating the HIWI2 knockdown cells with wortmannin increased the levels of TJP1 and CLDN1. Taken together, our study demonstrates the presence of PIWI-like proteins in somatic cells and the possible role of HIWI2 in preserving the functional integrity of epithelial cells probably by modulating the phosphorylation status of Akt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cox DN, Chao A, Baker J et al (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12:3715–3727. doi:10.1101/gad.12.23.3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuramochi-Miyagawa S, Kimura T, Yomogida K et al (2001) Two mouse piwi-related genes: miwi and mili. Mech Dev 108:121–133. doi:10.1016/S0925-4773(01)00499-3

    Article  CAS  PubMed  Google Scholar 

  3. Juliano CE, Reich A, Liu N et al (2013) PIWI proteins and PIWI-interacting RNAs function in hydra somatic stem cells. Proc Natl Acad Sci 111:337–342. doi:10.1073/pnas.1320965111

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reddien PW, Oviedo NJ, Jennings JR et al (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310:1327–1330. doi:10.1126/science.1116110

    Article  CAS  PubMed  Google Scholar 

  5. Kawaoka S, Hayashi N, Suzuki Y et al (2009) The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. RNA 15:1258–1264. doi:10.1261/rna.1452209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Houwing S, Kamminga LM, Berezikov E et al (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129:69–82. doi:10.1016/j.cell.2007.03.026

    Article  CAS  PubMed  Google Scholar 

  7. Sasaki T, Shiohama A, Minoshima S, Shimizu N (2003) Identification of eight members of the Argonaute family in the human genome☆. Genomics 82:323–330. doi:10.1016/S0888-7543(03)00129-0

    Article  CAS  PubMed  Google Scholar 

  8. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202. doi:10.1038/nature04917

    PubMed  Google Scholar 

  9. Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20:1709–1714. doi:10.1101/gad.1434406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aravin A, Gaidatzis D, Pfeffer S et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207. doi:10.1038/nature04916

    CAS  PubMed  Google Scholar 

  11. Watanabe T, Takeda A, Tsukiyama T et al (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–1743. doi:10.1101/gad.1425706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830. doi:10.1016/S1534-5807(02)00165-X

    Article  CAS  PubMed  Google Scholar 

  13. Palakodeti D, Smielewska M, Lu Y-C et al (2008) The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14:1174–1186. doi:10.1261/rna.1085008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qiao D, Zeeman A-M, Deng W et al (2002) Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene 21:3988–3999. doi:10.1038/sj.onc.1205505

    Article  CAS  PubMed  Google Scholar 

  15. Al-Janabi O, Wach S, Nolte E et al (2014) Piwi-like 1 and 4 gene transcript levels are associated with clinicopathological parameters in renal cell carcinomas. Biochim Biophys Acta 1842:686–690. doi:10.1016/j.bbadis.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  16. Jiang J, Zhang H, Tang Q et al (2011) Expression of HIWI in human hepatocellular carcinoma. Cell Biochem Biophys 61:53–58. doi:10.1007/s12013-011-9160-1

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Sun Y, Guo J et al (2006) Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer 118:1922–1929. doi:10.1002/ijc.21575

    Article  CAS  PubMed  Google Scholar 

  18. Zhang H, Ren Y, Xu H et al (2013) The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg Oncol 22:217–223. doi:10.1016/j.suronc.2013.07.001

    Article  PubMed  Google Scholar 

  19. Wang X, Tong X, Gao H et al (2014) Silencing HIWI suppresses the growth, invasion and migration of glioma cells. Int J Oncol 45:2385–2392

    CAS  PubMed  Google Scholar 

  20. Siddiqi S, Terry M, Matushansky I (2012) Hiwi mediated tumorigenesis is associated with DNA hypermethylation. PLoS ONE 7:e33711. doi:10.1371/journal.pone.0033711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Liu Y, Shen X et al (2012) The PIWI protein acts as a predictive marker for human gastric cancer. Int J Clin Exp Pathol 5:315–325

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yin D-T, Wang Q, Chen L et al (2011) Germline stem cell gene PIWIL2 mediates DNA repair through relaxation of chromatin. PLoS ONE 6:e27154. doi:10.1371/journal.pone.0027154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Houwing S, Berezikov E, Ketting RF (2008) Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J 27:2702–2711. doi:10.1038/emboj.2008.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang K, Lu Y, Yang P et al (2012) HILI inhibits TGF-β signaling by interacting with Hsp90 and promoting TβR degradation. PLoS ONE 7:e41973. doi:10.1371/journal.pone.0041973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee JH, Schütte D, Wulf G et al (2006) Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum Mol Genet 15:201–211. doi:10.1093/hmg/ddi430

    Article  CAS  PubMed  Google Scholar 

  26. Sugimoto K, Kage H, Aki N et al (2007) The induction of H3K9 methylation by PIWIL4 at the p16Ink4a locus. Biochem Biophys Res Commun 359:497–502. doi:10.1016/j.bbrc.2007.05.136

    Article  CAS  PubMed  Google Scholar 

  27. Su C, Ren Z-J, Wang F et al (2012) PIWIL4 regulates cervical cancer cell line growth and is involved in down-regulating the expression of p14ARF and p53. FEBS Lett 586:1356–1362. doi:10.1016/j.febslet.2012.03.053

    Article  CAS  PubMed  Google Scholar 

  28. Rajasethupathy P, Antonov I, Sheridan R et al (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149:693–707. doi:10.1016/j.cell.2012.02.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin H, Yin H (2008) A novel epigenetic mechanism in drosophila somatic cells mediated by Piwi and piRNAs. Cold Spring Harb Symp Quant Biol 73:273–281. doi:10.1101/sqb.2008.73.056

    Article  CAS  PubMed  Google Scholar 

  30. Lee EJ, Banerjee S, Zhou H et al (2011) Identification of piRNAs in the central nervous system. RNA 17:1090–1099. doi:10.1261/rna.2565011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gonzalez J, Qi H, Liu N, Lin H (2015) Piwi is a key regulator of both somatic and germline stem cells in the drosophila testis. Cell Rep 12:150–161. doi:10.1016/j.celrep.2015.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng E-C, Kang D, Wang Z, Lin H (2014) PIWI proteins are dispensable for mouse somatic development and reprogramming of fibroblasts into pluripotent stem cells. PLoS ONE 9:e97821. doi:10.1371/journal.pone.0097821

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sharma AK, Nelson MC, Brandt JE et al (2001) Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood 97:426–434

    Article  CAS  PubMed  Google Scholar 

  34. Nolde MJ, Cheng E-C, Guo S, Lin H (2013) Piwi genes are dispensable for normal hematopoiesis in mice. PLoS ONE 8:e71950. doi:10.1371/journal.pone.0071950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kotaja N, Bhattacharyya SN, Jaskiewicz L et al (2006) The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 103:2647–2652. doi:10.1073/pnas.0509333103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rajan KS, Velmurugan G, Pandi G, Ramasamy S (2014) miRNA and piRNA mediated Akt pathway in heart: antisense expands to survive. Int J Biochem Cell Biol 55:153–156. doi:10.1016/j.biocel.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  37. Peng L, Song L, Liu C et al (2015) piR-55490 inhibits the growth of lung carcinoma by suppressing mTOR signaling. Tumour Biol. doi:10.1007/s13277-015-4056-0

    Google Scholar 

  38. Berzal S, Alique M, Ruiz-Ortega M et al (2012) GSK3, snail, and adhesion molecule regulation by cyclosporine A in renal tubular cells. Toxicol Sci 127:425–437. doi:10.1093/toxsci/kfs108

    Article  CAS  PubMed  Google Scholar 

  39. Severson EA, Kwon M, Hilgarth RS et al (2010) Glycogen synthase kinase 3 (GSK-3) influences epithelial barrier function by regulating occludin, claudin-1 and E-cadherin expression. Biochem Biophys Res Commun 397:592–597. doi:10.1016/j.bbrc.2010.05.164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen R, Chang G, Zhang Y et al (2012) Cloning of the quail PIWI gene and characterization of PIWI binding to small RNAs. PLoS ONE 7:e51724. doi:10.1371/journal.pone.0051724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brower-Toland B, Findley SD, Jiang L et al (2007) Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev 21:2300–2311. doi:10.1101/gad.1564307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ross RJ, Weiner MM, Lin H (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505:353–359. doi:10.1038/nature12987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cunha-Vaz J (2012) Blood-retinal barrier and its relevance in retinal disease. Med Retin 1:6–10. doi:10.1159/000336698

    Google Scholar 

  44. Matter K, Balda MS (2003) Signalling to and from tight junctions. Nat Rev Mol Cell Biol 4:225–236. doi:10.1038/nrm1055

    Article  CAS  PubMed  Google Scholar 

  45. González-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta Biomembr 1778:729–756. doi:10.1016/j.bbamem.2007.08.018

    Article  Google Scholar 

  46. Kim B, Breton S (2016) The MAPK/ERK-signaling pathway regulates the expression and distribution of tight junction proteins in the mouse proximal epididymis. Biol Reprod 94:22. doi:10.1095/biolreprod.115.134965

    Article  PubMed  Google Scholar 

  47. Bachelder RE, Yoon S-O, Franci C et al (2005) Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 168:29–33. doi:10.1083/jcb.200409067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohkubo T, Ozawa M (2004) The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 117:1675–1685. doi:10.1242/jcs.01004

    Article  CAS  PubMed  Google Scholar 

  49. Huang XA, Yin H, Sweeney S et al (2013) A major epigenetic programming mechanism guided by piRNAs. Dev Cell 24:502–516. doi:10.1016/j.devcel.2013.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen Z, Che Q, Jiang F-Z et al (2015) Piwil1 causes epigenetic alteration of PTEN gene via upregulation of DNA methyltransferase in type I endometrial cancer. Biochem Biophys Res Commun 463:876–880. doi:10.1016/j.bbrc.2015.06.028

    Article  CAS  PubMed  Google Scholar 

  51. Gebert D, Ketting RF, Zischler H, Rosenkranz D (2015) piRNAs from pig testis provide evidence for a conserved role of the piwi pathway in post-transcriptional gene regulation in mammals. PLoS ONE 10:e0124860. doi:10.1371/journal.pone.0124860

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xu H-Z, Le Y-Z (2011) Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Invest Ophthalmol Vis Sci 52:2160–2164. doi:10.1167/iovs.10-6518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jacot JL, Sherris D (2011) Potential therapeutic roles for inhibition of the PI3K/Akt/mTOR pathway in the pathophysiology of diabetic retinopathy. J Ophthalmol 2011:589813. doi:10.1155/2011/589813

    Article  PubMed  PubMed Central  Google Scholar 

  54. Friemel C, Ammerpohl O, Gutwein J et al (2014) Array-based DNA methylation profiling in male infertility reveals allele-specific DNA methylation in PIWIL1 and PIWIL2. Fertil Steril 101(1097–1103):e1. doi:10.1016/j.fertnstert.2013.12.054

    Google Scholar 

  55. Suzuki R, Honda S, Kirino Y (2012) PIWI expression and function in cancer. Front Genet 3:204. doi:10.3389/fgene.2012.00204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Srinivasan V, Palanisamy K, Karunakaran C et al (2014) Expression and localisation of adiponectin and its receptors in human ocular tissues. Int J Pharma Bio Sci 5:639–646

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial assistance provided by Department of Science and Technology under the project “SR/FT/LS-145/2010”, Indian Council of Medical Research “BMS/FW/BIOCHEM/2015-23270/OCT-2015/24/TN/PVT” and Max Planck-India mobility grant ‘IGSTC/MPG/FS(SC)2012’. CS thanks University Grants Commission, New Delhi for the award of Assistant Professorship under its Faculty Recharge Program (UGC-FRP). We acknowledge the facilities, the scientific technical assistance of Advanced Microscopy facility at NCTB, Department of Biotechnology, IIT Madras, Chennai, India. We thank Dr. R.Baskaran, Department of Biochemistry and Molecular Biology, Pondicherry University, for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbulakshmi Chidambaram.

Ethics declarations

Conflict of interests

The authors declare that no conflict of interests exist.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and animal rights statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. If applicable (where such a committee exists): “All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.”

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2016_2906_MOESM1_ESM.tif

Supplementary material 1: S1 figure. Specificity of the primers. a) Agarose gel images showing the specificity of the primers. b) Melting curve of the real time PCR primers showing the amplification was only due to PIWIL transcripts (TIFF 3196 kb)

11010_2016_2906_MOESM2_ESM.tif

Supplementary material 2: S2 figure. Validation of HIWI and HILI antibodies. a) Expression of HIWI in rat testis and rat liver as a positive and negative control respectively. The band at 99 kDa in rat testis has reduced intensity when the HIWI antibody was incubated with the respective blocking peptide. b) Expression of HILI in rat testis and rat liver as a positive and negative control respectively. The band at 110 kDa in rat testis has reduced intensity when the HILI antibody was incubated with the respective blocking peptide. (Positive control (PC) – rat testis; Negative control (NC)—Rat liver; BP—blocking peptide). (TIFF 1947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivagurunathan, S., Palanisamy, K., Arunachalam, J.P. et al. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol Cell Biochem 427, 145–156 (2017). https://doi.org/10.1007/s11010-016-2906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2906-8

Keywords

Navigation