Skip to main content
Log in

The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) remains incurable by conventional chemotherapy. Sphingosine-1-phosphate (S1P) receptor-mediated signaling has been recently demonstrated to have critical roles in cell survival and drug resistance in a number of hematological malignancies. To dissect the roles of S1P receptor pathway in MM, we systematically examined cell viability and protein expression associated with cell survival and drug resistance in MM cell lines upon treatment with either pathway activator (S1P) or inhibitor (FTY720). Our results reveal that FTY720 inhibits cell proliferation by downregulating expression of target genes, while S1P has an opposite effect. Knocking down of S1P receptor S1P5R results in a reduction of cell survival-related gene expression; however, it does not have impacts on expression of drug resistance genes. These results suggest that S1P signaling plays a role in cell proliferation and drug resistance in MM, and targeting this pathway will provide a new therapeutic direction for MM management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grammatikos G, Schoell N, Ferreirós N et al (2016) Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma. Oncotarget 7:18095–18105

    PubMed  PubMed Central  Google Scholar 

  2. Lee J, Yeganeh B, Ermini L et al (2015) Sphingolipids as cell fate regulators in lung development and disease. Apoptosis 20:740–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510:58–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morad SA, Cabot MC (2013) Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 13:51–65

    Article  CAS  PubMed  Google Scholar 

  5. Proia RL, Hla T (2015) Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 125:1379–1387

    Article  PubMed  PubMed Central  Google Scholar 

  6. White C, Alshaker H, Cooper C et al (2016) The emerging role of FTY720 (fingolimod) in cancer treatment. Oncotarget 17:23106–23127

    Google Scholar 

  7. Siehler S, Manning DR (2002) Pathways of transduction engaged by sphingosine-1-phosphate through G protein-coupled receptors. Biochim Biophys Acta 1582:94–99

    Article  CAS  PubMed  Google Scholar 

  8. Radeff-Huang J, Seasholtz TM, Matteo RG et al (2004) G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92:949–966

    Article  CAS  PubMed  Google Scholar 

  9. Taha TA, Argraves KM, Obeid LM (2004) Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim Biophys Acta 1682:48–55

    Article  CAS  PubMed  Google Scholar 

  10. Devine KM, Smicun Y, Hope JM et al (2008) S1P induced changes in epithelial ovarian cancer proteolysis, invasion, and attachment are mediated by Gi and Rac. Gynecol Oncol 110:237–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee MJ, Evans M, Hla T (1996) The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J Biol Chem 271:11272–11279

    Article  CAS  PubMed  Google Scholar 

  12. Windh RT, Lee MJ, Hla T et al (1999) Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J Biol Chem 274:27351–27358

    Article  CAS  PubMed  Google Scholar 

  13. An S, Bleu T, Zheng Y (1999) Transduction of intracellular calcium signals through G protein-mediated activation of phospholipase C by recombinant sphingosine 1-phosphate receptors. Mol Pharmacol 55:787–794

    CAS  PubMed  Google Scholar 

  14. Ancellin N, Hla T (1999) Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J Biol Chem 274:18997–19002

    Article  CAS  PubMed  Google Scholar 

  15. Van Brocklyn JR, Gräler MH, Bernhardt G et al (2000) Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95:2624–2629

    PubMed  Google Scholar 

  16. Malek RL, Toman RE, Edsall LC et al (2001) Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors. J Biol Chem 276:5692–5699

    Article  CAS  PubMed  Google Scholar 

  17. Im DS, Heise CE, Ancellin N et al (2000) Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J Biol Chem 275:14281–14286

    Article  CAS  PubMed  Google Scholar 

  18. Graler MH, Goetzl EJ (2004) The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 18:551–553

    CAS  PubMed  Google Scholar 

  19. Oo ML, Thangada S, Wu MT et al (2007) Immunosuppressive and anti-angiogenic sphingosine-1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282:9082–9089

    Article  CAS  PubMed  Google Scholar 

  20. Gao Y, Gao F, Chen K et al (2015) Sphingosine kinase 1 as an anticancer therapeutic target. Drug Des Devel Ther 9:3239–3245

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang L, Wang X, Bullock AJ et al (2015) Anti-S1P antibody as a novel therapeutic strategy for VEGFR TKI-resistant renal cancer. Clin Cancer Res 21:1925–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matula K, Collie-Duguid E, Murray G et al (2015) Regulation of cellular sphingosine-1-phosphate by sphingosine kinase 1 and sphingosine-1-phosphate lyase determines chemotherapy resistance in gastroesophageal cancer. BMC Cancer 15:762

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brizuela L, Martin C, Jeannot P et al (2014) Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. Mol Oncol 8:1181–1195

    Article  CAS  PubMed  Google Scholar 

  24. Marvaso G, Barone A, Amodio N et al (2014) Sphingosine analog fingolimod (FTY720) increases radiation sensitivity of human breast cancer cells in vitro. Cancer Biol Ther 15:797–805

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rosa R, Marciano R, Malapelle U et al (2013) Sphingosine kinase 1 overexpression contributes to cetuximab resistance in human colorectal cancer models. Clin Cancer Res 19:138–147

    Article  CAS  PubMed  Google Scholar 

  26. Pohl A, Lage H, Muller P et al (2002) Transport of phosphatidylserine via MDR1 (multidrug resistance 1) P-glycoprotein in a human gastric carcinoma cell line. Biochem J 365:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schaich M, Soucek S, Thiede C et al (2005) MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia. Br J Haematol 128:324–332

    Article  CAS  PubMed  Google Scholar 

  28. García-Bernal D, Redondo-Muñoz J, Dios-Esponera A et al (2013) Sphingosine-1-phosphate activates chemokine-promoted myeloma cell adhesion and migration involving α4β1 integrin function. J Pathol 229:36–48

    Article  PubMed  Google Scholar 

  29. Yabu T, Tomimoto H, Taguchi Y et al (2005) Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood 106:125–134

    Article  CAS  PubMed  Google Scholar 

  30. Neviani P, Santhanam R, Oaks JJ et al (2007) FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 117:2408–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liao A, Hu R, Zhao Q et al (2012) Autophagy induced by FTY720 promotes apoptosis in U266 cells. Eur J Pharm Sci 45:600–605

    Article  CAS  PubMed  Google Scholar 

  32. Pilorget A, Demeule M, Barakat S et al (2007) Modulation of P-glycoprotein function by sphingosine kinase-1 in brain endothelial cells. J Neurochem 100:1203–1210

    Article  CAS  PubMed  Google Scholar 

  33. Miller DS (2014) Sphingolipid signaling reduces basal P-glycoprotein activity in renal proximal tubule. J Pharmacol Exp Ther 348:459–464

    Article  PubMed  PubMed Central  Google Scholar 

  34. Strader CR, Pearce CJ, Oberlies NH (2011) Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. J Nat Prod 74:900–907

    Article  CAS  PubMed  Google Scholar 

  35. Ward MD, Jones DE, Goldman MD (2014) Overview and safety of fingolimod hydrochloride use in patients with multiple sclerosis. Expert Opin Drug Saf 13:989–998

    Article  CAS  PubMed  Google Scholar 

  36. Liao A, Broeg K, Fox T et al (2011) Therapeutic efficacy of FTY720 in a rat model of NK-cell leukemia. Blood 118:2793–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xing Y, Wang ZH, Ma DH et al (2014) FTY720 enhances chemosensitivity of colon cancer cells to doxorubicin and etoposide via the modulation of P-glycoprotein and multidrug resistance protein 1. J Dig Dis 15:246–259

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (81272629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Liao.

Additional information

Di Fu and Yingchun Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, D., Li, Y., Li, J. et al. The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells. Mol Cell Biochem 424, 185–193 (2017). https://doi.org/10.1007/s11010-016-2854-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2854-3

Keywords

Navigation