Skip to main content
Log in

Effect of reversine on cell cycle, apoptosis, and activation of hepatic stellate cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Experimental and clinical evidence show that liver fibrosis is potentially reversible. Hepatic stellate cells (HSCs) play a key role in the development of liver fibrosis. Some studies have shown that reversine could induce cell apoptosis. We attempted to elucidate the effect of reversine on cell cycle, apoptosis, and activation of HSCs. Data showed that reversine induced morphological changes in HSCs, inhibited cell proliferation, and induced cell-cycle arrest at the G2/M phase. Reversine induced cell apoptosis through caspase-dependent and mitochondria-dependent pathways. Reversine inhibited the activation of HSCs through TGF-β signaling pathway and degraded extracellular matrix protein collagen-I. The decreased TIMP1 and TGF-β1 proteins promoted fibrosis reversion. Reversine might be a promising drug for liver fibrosis reversion because it induces HSCs apoptosis, restrains cell proliferation, reduces HSCs activation, and degrades extracellular matrix in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pinzani M, Marra F, Carloni V (1998) Signal transduction in hepatic stellate cells. Liver 18:2–13

    Article  CAS  PubMed  Google Scholar 

  4. Wu J, Zern MA (2000) Hepatic stellate cells: a target for the treatment of liver fibrosis. J Gastroenterol 35:665–672

    Article  CAS  PubMed  Google Scholar 

  5. Ellis EL, Mann DA (2012) Clinical evidence for the regression of liver fibrosis. J Hepatol 56:1171–1180

    Article  PubMed  Google Scholar 

  6. Chen S, Zhang Q, Wu X, Schultz PG, Ding S (2004) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126:410–411

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Takanashi S, Zhang Q, Xiong W, Zhu S, Peters EC, Ding S, Schultz PG (2007) Reversine increases the plasticity of lineage-committed mammalian cells. Proc Natl Acad Sci USA 104:10482–10487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anastasia L, Sampaolesi M, Papini N, Oleari D, Lamorte G, Tringali C, Monti E, Galli D, Tettamanti G, Cossu G, Venerando B (2006) Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death Differ 13:2042–2051

    Article  CAS  PubMed  Google Scholar 

  9. Lv X, Zhu H, Bai Y, Chu Z, Hu Y, Cao H, Liu C, He X, Peng S, Gao Z, Yang C, Hua J (2012) Reversine promotes porcine muscle derived stem cells (PMDSCs) differentiation into female germ-like cells. J Cell Biochem 113:3629–3642

    Article  CAS  PubMed  Google Scholar 

  10. Qu G, von Schroeder HP (2012) Preliminary evidence for the dedifferentiation of RAW 264.7 cells into mesenchymal progenitor-like cells by a purine analog. Tissue Eng Part A 18:1890–1901

    Article  CAS  PubMed  Google Scholar 

  11. Lee YR, Wu WC, Ji WT, Chen JY, Cheng YP, Chiang MK, Chen HR (2012) Reversine suppresses oral squamous cell carcinoma via cell cycle arrest and concomitantly apoptosis and autophagy. J Biomed Sci 19:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hua SC, Chang TC, Chen HR, Lu CH, Liu YW, Chen SH, Yu HI, Chang YP, Lee YR (2012) Reversine, a 2,6-disubstituted purine, as an anti-cancer agent in differentiated and undifferentiated thyroid cancer cells. Pharm Res 29:1990–2005

    Article  CAS  PubMed  Google Scholar 

  13. Kuo CH, Lu YC, Tseng YS, Shi CS, Chen SH, Chen PT, Wu FL, Chang YP, Lee YR (2014) Reversine induces cell cycle arrest, polyploidy, and apoptosis in human breast cancer cells. Breast Cancer 21:358–369

    Article  PubMed  Google Scholar 

  14. Xu L, Hui AY, Albanis E, Arthur MJ, O’Byrne SM, Blaner WS, Mukherjee P, Friedman SL, Eng FJ (2005) Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 54:142–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang X, Hu F, Hu X, Chen W, Huang Y, Yu X (2014) Proteomic identification of potential Clonorchis sinensis excretory/secretory products capable of binding and activating human hepatic stellate cells. Parasitol Res 113:3063–3071

    Article  PubMed  Google Scholar 

  16. Fibbi G, Pucci M, D’Alessio S et al (2001) Transforming growth factor beta-1 stimulates invasivity of hepatic stellate cells by engagement of the cell-associated fibrinolytic system. Growth Factors 19:87–100

    Article  CAS  PubMed  Google Scholar 

  17. Li D, Friedman SL (1999) Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. J Gastroenterol Hepatol 14:618–633

    Article  CAS  PubMed  Google Scholar 

  18. Safadi R, Friedman SL (2002) Hepatic fibrosis–role of hepatic stellate cell activation. Med Gen Med 4:27

    Article  Google Scholar 

  19. Friedman SL (2015) Hepatic fibrosis: emerging therapies. Dig Dis 33:504–507

    Article  PubMed  Google Scholar 

  20. Friedman SL (2008) Hepatic fibrosis-overview. Toxicology 254:120–129

    Article  CAS  PubMed  Google Scholar 

  21. Santo L, Siu KT, Raje N (2015) Targeting cyclin-dependent kinases and cell cycle progression in human cancers. Semin Oncol 42:788–800

    Article  CAS  PubMed  Google Scholar 

  22. Santamaria D, Ortega S (2006) Cyclins and CDKS in development and cancer: lessons from genetically modified mice. Front Biosci 11:1164–1188

    Article  CAS  PubMed  Google Scholar 

  23. Viallard JF, Lacombe F, Belloc F, Pellegrin JL, Reiffers J (2001) Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology. Cancer Radiother 5:109–129

    Article  CAS  PubMed  Google Scholar 

  24. Hsieh TC, Traganos F, Darzynkiewicz Z, Wu JM (2007) The 2,6-disubstituted purine reversine induces growth arrest and polyploidy in human cancer cells. Int J Oncol 31:1293–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Su L, Wang H, Miao J, Liang Y (2015) Clinicopathological significance and potential drug target of CDKN2A/p16 in endometrial carcinoma. Sci Rep 5:13238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramsey MR, Krishnamurthy J, Pei XH, Torrice C, Lin W, Carrasco DR, Ligon KL, Xiong Y, Sharpless NE (2007) Expression of p16Ink4a compensates for p18Ink4c loss in cyclin-dependent kinase 4/6-dependent tumors and tissues. Cancer Res 67:4732–4741

    Article  CAS  PubMed  Google Scholar 

  27. Ruas M, Gregory F, Jones R, Poolman R, Starborg M, Rowe J, Brookes S, Peters G (2007) CDK4 and CDK6 delay senescence by kinase-dependent and p16INK4a-independent mechanisms. Mol Cell Biol 27:4273–4282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu BD, Becker-Hapak M, Snyder EL, Vooijs M, Denicourt C, Dowdy SF (2003) Distinct and nonoverlapping roles for pRB and cyclin D:cyclin-dependent kinases 4/6 activity in melanocyte survival. Proc Natl Acad Sci USA 100:14881–14886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sasai K, Katayama H, Stenoien DL, Fujii S, Honda R, Kimura M, Okano Y, Tatsuka M, Suzuki F, Nigg EA, Earnshaw WC, Brinkley WR, Sen S (2004) Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil Cytoskeleton 59:249–263

    Article  CAS  PubMed  Google Scholar 

  30. Falchook GS, Bastida CC, Kurzrock R (2015) Aurora kinase inhibitors in oncology clinical trials: current state of the progress. Semin Oncol 42:832–848

    Article  CAS  PubMed  Google Scholar 

  31. Vagnarelli P, Earnshaw WC (2004) Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma 113:211–222

    Article  PubMed  Google Scholar 

  32. Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4:842–854

    Article  CAS  PubMed  Google Scholar 

  33. Trakala M, Fernandez-Miranda G, Perez DCI, Heeschen C, Malumbres M (2013) Aurora B prevents delayed DNA replication and premature mitotic exit by repressing p21(Cip1). Cell Cycle 12:1030–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D’Alise AM, Amabile G, Iovino M, Di Giorgio FP, Bartiromo M, Sessa F, Villa F, Musacchio A, Cortese R (2008) Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells. Mol Cancer Ther 7:1140–1149

    Article  PubMed  Google Scholar 

  36. McMillin DW, Delmore J, Weisberg E, Negri JM, Geer DC, Klippel S, Mitsiades N, Schlossman RL, Munshi NC, Kung AL, Griffin JD, Richardson PG, Anderson KC, Mitsiades CS (2010) Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 16:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim YK, Choi HY, Kim NH, Lee W, Seo DW, Kang DW, Lee HY, Han JW, Park SW, Kim SN (2007) Reversine stimulates adipocyte differentiation and downregulates Akt and p70(s6k) signaling pathways in 3T3-L1 cells. Biochem Biophys Res Commun 358:553–558

    Article  CAS  PubMed  Google Scholar 

  38. Pinzani M, Marra F (2001) Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis 21:397–416

    Article  CAS  PubMed  Google Scholar 

  39. Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P, Mallat A (2005) Hepatic fibrosis: molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 45:605–628

    Article  CAS  PubMed  Google Scholar 

  40. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250

    Article  CAS  PubMed  Google Scholar 

  41. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Fukui H (2002) Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology 36:850–860

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was funded by Guangdong Science and Technology Foundation (NO 2011B061300024, 2013B021800057) and Guangdong National Science Foundation (NO 10151006001000013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weili Gu.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Huang, D., Weng, J. et al. Effect of reversine on cell cycle, apoptosis, and activation of hepatic stellate cells. Mol Cell Biochem 423, 9–20 (2016). https://doi.org/10.1007/s11010-016-2815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2815-x

Keywords

Navigation