Skip to main content
Log in

Combined therapeutic efficacy of carvacrol and X-radiation against 1,2-dimethyl hydrazine-induced experimental rat colon carcinogenesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

A Correction to this article was published on 30 November 2021

This article has been updated

Abstract

Colon cancer is one of the most commonly diagnosed cancers, and is a major cause of cancer morbidity and mortality worldwide. The objective of the present study is to evaluate the combined therapeutic efficacy of carvacrol (CVC) and X-radiation against 1,2-dimethylhydrazine-induced colon cancer. Male albino Wistar rats were randomly divided into six groups. Group 1 served as control; group 2 received 40 mg/kg b.wt of CVC orally everyday throughout the experimental period (32 weeks); groups 3–6 received subcutaneous injections of DMH (20 mg/kg b.wt), once a week for the first 15 weeks; group 4 received a single dose of X-radiation at the 31st week; group 5 received CVC (40 mg/kg b.wt) two days after the last injection of DMH and continued everyday till the end of the experimental period; group 6 received CVC as in group 5 and radiation as in group 4. DMH-treated rats showed increased incidence of aberrant crypt foci (ACF), dysplastic aberrant crypt foci (DACF), mast cell number, argyrophilic nucleolar organizer regions; elevated activities of phase I enzymes, decreased activities of phase II enzymes, decreased mucin content and altered colonic and liver histology as compared to control rats. Though the individual treatments with CVC and X-radiation to DMH-treated rats reversed the above changes, the combined treatment with both CVC and X-radiation showed a marked effect. Our findings emphasize the potential role of combined therapeutic effect of CVC and X-radiation against DMH-induced colon carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2009) Cancer statistics 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  2. Srikhande SV, Saoji RR, Barreto SG, Kakade AC, Waterford SD, Ahire SB, Goliwale FM, Shykla PJ (2007) Outcomes of resection for rectal cancer in India: the impact of the double stapling technique. World J Surg Oncol 5:35–40

    Article  Google Scholar 

  3. Humphries A, Wright NA (2008) Colonic crypt organization and tumorigenesis. Nat Rev Cancer 8:415–424

    Article  CAS  PubMed  Google Scholar 

  4. Aggarwal BB (2008) The past, present and future of multi-targeted cancer treatment “Naturally”: food for thought. Cancer Lett 269:187–188

    Article  CAS  PubMed  Google Scholar 

  5. Javvadi P, Segan AT, Tuttle SW, Koumenis C (2008) The chemopreventive agent curcumin is a potent radiosensitizer of human cervical tumor cells via increased reactive oxygen species production and over-activation of the mitogen- activated protein kinase pathway. Mol Pharmacol 73:1491–1501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hosseinimehr SJ (2007) Foundation review: trends in the development of radioprotective agents. Drug Discov Today 12:794–805

    Article  CAS  PubMed  Google Scholar 

  7. Weisburger JH (1971) Colon carcinogens: their metabolism and mode of action. Cancer 28:60–70

    Article  CAS  PubMed  Google Scholar 

  8. Newell LE, Heddle JA (2004) The potent colon carcinogen 1,2-dimethylhydrazine induces mutations primarily in the colon. Mutat Res 564:1–7

    Article  CAS  PubMed  Google Scholar 

  9. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  CAS  PubMed  Google Scholar 

  10. Roncucci L, Pedroni M, Vaccina F, Benatti P, Marzona L, Pol AD (2003) Aberrant crypt foci in colorectal carcinogenesis: cell and crypt dynamics. Cell Prolifer 33:1–8

    Article  Google Scholar 

  11. Ruschoff J, Plate K, Bittinger A, Thomas C (1989) Nucleolar organizer regions (NORs). Basic concepts and practical application in tumor pathology. Pathol Res Pract 185:878–885

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka T, Kojima M, Suzui M, Mori H (1993) Chemoprevention of colon carcinogenesis by the natural product of a simple phenolic compound protocatechuic acid: suppressing effects on tumor development and biomarkers expression of colon tumorigenesis. Cancer Res 53:3908–3913

    CAS  PubMed  Google Scholar 

  13. Gendler SJ, Spicer AP (1995) Epithelial mucin genes. Annu Rev Physiol 57:607–634

    Article  CAS  PubMed  Google Scholar 

  14. Enss ML, Schmidt-Wittig U, Höner K, Kownatzki R, Gärtner K (1994) Mechanical challenge causes alterations of rat colonic mucosa and released mucins. Alterations of mucosa and mucins. J Exp Anim Sci 36:128–140

    CAS  PubMed  Google Scholar 

  15. Aeschbach R, Loliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI (1994) Antioxidant actions of thymol, CVC, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36

    Article  CAS  PubMed  Google Scholar 

  16. Mastelic J, Jerkovic I, Blazevic I, Poljak-Blazi M, Borovic S, Ivancic-Bace I, Smrecki V, Zarkovic N, Brcic-Kostic K, Vikic-Topic D, Muller N (2008) Comparative study on the antioxidant and biological activities of CVC, thymol, and eugenol derivatives. J Agric Food Chem 56:3989–3996

    Article  CAS  PubMed  Google Scholar 

  17. Zeytinoglu M, Aydin S, Ozturk Y, Baser KHC (1998) Inhibitory effects of CVC on DMBA induced pulmonary tumorigenesis in rats. Acta Pharm Turcica 40(2):93–98

    CAS  Google Scholar 

  18. Arunasree KM (2010) Anti-proliferative effects of CVC on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine 17:581–588

    Article  CAS  PubMed  Google Scholar 

  19. Hajhashemi V, Ghannadi A, Pezeshkian SK (2002) Antinociceptive and anti-inflammatory effects of Satureja hortensis L. extracts and essential oil. J Ethnopharmacol 82:83–87

    Article  PubMed  Google Scholar 

  20. Horvathova E, Turcaniova V, Slamenova D (2007) Comparative study of DNA-damaging and DNA-protective effects of selected components of essential plant oils in human leukemic cells K562. Neoplasma 54:478–483

    CAS  PubMed  Google Scholar 

  21. Shelef LA (1983) Antimicrobial effects of spices. J Food Saf 6:29–44

    Article  Google Scholar 

  22. Aligiannis N, Kalpoutzakis E, Mitaki S, Chinou IB (2001) Composition and antimicrobial activity of the essential oil of two Organum species. J Agric Food Chem 49:4168–4170

    Article  CAS  PubMed  Google Scholar 

  23. Sokmen W, Serkedjieva J, Daferera D, Gulluce M, Polissiou M, Tepe B, Akpular HA, Sahin Sokmen FA (2004) In vitro antioxidant, antimicrobial and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J Agric Food Chem 52:3309–3312

    Article  PubMed  Google Scholar 

  24. Aristatile B, Al-Numair KS, Veeramani C, Pugalendi KV (2009) Effect of CVC on hepatic marker enzymes and antioxidant status in d-galactosamine induced-hepatotoxicity in rats. Fundam Clin Pharmacol 23:757–765

    Article  CAS  PubMed  Google Scholar 

  25. Baser KHC (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14:3106–3120

    Article  CAS  PubMed  Google Scholar 

  26. Sivaranjani A, Sivagami G, Nalini N (2015) Chemopreventive effect of carvacrol on 1,2-dimethylhydrazine induced experimental colon carcinogenesis. J Can Res Ther [Epub ahead of print]

  27. Bird RP (1995) Role of ACF in understanding the pathogenesis of colon cancer. Cancer Lett 93:55–71

    Article  CAS  PubMed  Google Scholar 

  28. Ochiai M, Watanabe M, Nakanishi M, Taguchi A, Sugimura T, Nakagama H (2005) Differential staining of dysplastic aberrant crypt foci in the colon facilitates prediction of carcinogenic potentials of chemicals in rats. Cancer Lett 220:67–74

    Article  CAS  PubMed  Google Scholar 

  29. Ploton D, Menager M, Jeannesson P (1986) Improvement in the staining and in the visualization of the argyrophilic proteins of the nucleolar organizer regions at the optical level. Histochem J 18:5–14

    Article  CAS  PubMed  Google Scholar 

  30. Schladt L, Wörner W, Setiabudi F, Oesch F (1986) Distribution and inducibility of cytosolic epoxide hydrolase in male Sprague–Dawley rats. Biochem Pharmacol 35:3309–3316

    Article  CAS  PubMed  Google Scholar 

  31. Omura T, Sato R (1964) The carbon monoxide binding pigment of the liver. J Biol Chem 239:2370–2378

    CAS  PubMed  Google Scholar 

  32. Omura T, Takasue S (1970) A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J Biochem 67:249–257

    CAS  PubMed  Google Scholar 

  33. Watt KC, Plopper CG, Buckpitt AR (1997) Measurement of cytochrome P4502E1 activity in rat tracheobronchial airways using high-performance liquid chromatography with electrochemical detection. Anal Biochem 248:26–30

    Article  CAS  PubMed  Google Scholar 

  34. Mihara K, Sato R (1972) Partial purification of cytochrome b5 reductase from rabbit liver microsomes with detergent and its properties. J Biochem 71:725–735

    CAS  PubMed  Google Scholar 

  35. Habig WH, Pabst MJ, Jokoby WB (1974) Glutathione S-transferases the first step inmercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  36. Ernster L, Danielson L, Ljunggren M (1962) DT-diaphorse 1 purification from the soluble fraction of rat liver cytoplasm, and properties. Biochim Biophys Acta 58:171–188

    Article  CAS  PubMed  Google Scholar 

  37. Isselbacher KJ, Chrabas MF, Quinn RC (1962) The solubilization and partial purification of glucuronyl transferase from rabbit liver microsomes. J Biol Chem 237:3033–3036

    CAS  PubMed  Google Scholar 

  38. Sarkar FH, Li Y (2002) Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metast Rev 21:265–280

    Article  CAS  Google Scholar 

  39. Nambiar D, Rajamani P, Singh RP (2011) Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat Res 728:139–157

    Article  CAS  PubMed  Google Scholar 

  40. Vinothkumar R, Vinothkumar R, Sudha M, Nalini N (2013) Chemopreventive effect of zingerone against colon carcinogenesis induced by 1,2-dimethylhydrazine in rats. Eur J Cancer Prev 23(5):361–371

    Article  Google Scholar 

  41. Rajesh M, Namitha K (2011) Anorectal mucinous adenocarcinoma in child: a case report. Eur J Pediatr 170:1461–1463

    Article  Google Scholar 

  42. Mori M, Hata K, Yamada Y, Kuno T, Hara A (2005) Significance and role of early-lesions in experimental colorectal carcinogenesis. Chem Biolo Interact 155:1–9

    Article  CAS  Google Scholar 

  43. Smith AJ, Stern HS, Penner M, Hay K, Mitri A, Bapat BV, Gallinger S (1994) Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res 54:5527–5530

    CAS  PubMed  Google Scholar 

  44. Sangeetha N, Felix AJ, Nalini N (2009) Silibinin modulates biotransforming microbial enzymes and prevents 1,2-dimethylhydrazine induced preneoplastic changes in experimental colon cancer. Eur J Cancer Prev 18(5):385–394

    Article  CAS  PubMed  Google Scholar 

  45. Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xeno-bioticmetabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149–173

    Article  CAS  PubMed  Google Scholar 

  46. Srinivasan P, Suchalatha S, Babu PV, Devi RS, Narayan S, Sabitha KE et al (2008) Chemopreventive and therapeutic modulation of green tea polyphenols on drug metabolizing enzymes in 4-nitroquinoline 1-oxide induced oral cancer. Chem Biol Interact 172:224–234

    Article  CAS  PubMed  Google Scholar 

  47. Sohn OS, Ishizaki H, Yang CS, Fiala ES (1991) Metabolism of azoxymethane, methazoxymethanol and N-nitrosodimethylamine by cytochrome P450IIEI. Carcinogenesis 12:127–131

    Article  CAS  PubMed  Google Scholar 

  48. Chandra Mohan KV, Kumaraguruparan R, Prathiba D, Nagini S (2006) Modulation of xenobiotic-metabolizing enzymes and redox status during chemoprevention of hamster buccal carcinogenesis by bovine lactoferrin. Nutrition 22:940–946

    Article  PubMed  Google Scholar 

  49. Fisher MB, Paine MF, Strelevitz TJ, Wrighton SA (2001) The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab Rev 33:273–297

    Article  CAS  PubMed  Google Scholar 

  50. Kong AN, Owuor E, Yu R, Hebbar V, Chen C, Hu R et al (2001) Induction of xenobiotic enzymes by the map kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab Rev 33:255–271

    Article  CAS  PubMed  Google Scholar 

  51. Smith PA, Sorich MJ, McKinnon RA, Miners JO (2003) Pharmacophore and quantitative structure-activity relationship modeling: complementary approaches for the rationalization and prediction of UDP-glucuronosyltransferase 1 A4 substrate selectivity. J Med Chem 46:1617–1626

    Article  CAS  PubMed  Google Scholar 

  52. Dong RH, Fang ZZ, Zhu LL, Liang SC, Ge GB, Liu ZY (2012) Investigation o f UDP-glucuronosyltransferases (UGTs) inhibitory properties of carvacrol. Phytother Res 26:86–90

    Article  CAS  PubMed  Google Scholar 

  53. Yamaguchi A, Tsukioka Y, Kurosaka Y, Nishimura G, Kanno M, Yonemura Y, Mivazaki I (1993) Prognostic value of nucleolar organizer regions in endoscopically biopsied tissues of colorectal cancers. Oncology 50:121–126

    Article  CAS  PubMed  Google Scholar 

  54. Yin QH, Yan FX, Zu XY, Wu YH, Wu XP, Liao MC, Deng SW, Yin LL, Zhuang YZ (2012) Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology 64:43–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Aristatile B, Al-Numair KS, Al-Assaf AH, Pugalendi KV (2011) Pharmacological effect of carvacrol on d-galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. J Nat Med 65:568–577

    Article  CAS  PubMed  Google Scholar 

  56. Boltin D, Perets TT, Vilkin A (2013) Mucin function in inflammatory bowel disease: an update. J Clin Gastroenterol 47:106–111

    Article  CAS  PubMed  Google Scholar 

  57. Choi JG, Kang OH, Lee YS (2009) Antibacterial activity of methylgallate isolated from gallarhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules 14(5):1773–1780

    Article  CAS  PubMed  Google Scholar 

  58. Xia Q, Wu XJ, Zhou Q (2011) No relationship between the distribution of mast cells and the survival of stage IIIB colon cancer patients. J Transl Med 9:88

    Article  PubMed Central  PubMed  Google Scholar 

  59. Hotta M, Nakata R, Katsukawa M, Hori K, Takahashi S, Inoue H (2010) Carvacrol, a component of thyme oil, activates PPAR alpha and gamma and suppresses COX-2 expression. J Lipid Res 51:132–139

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the management of Dr. Kamakshi Memorial hospital, Chennai, Tamil Nadu, India for having provided necessary radiation facilities to complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Namasivayam.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arivalagan, S., Thomas, N.S., Chandrasekaran, B. et al. Combined therapeutic efficacy of carvacrol and X-radiation against 1,2-dimethyl hydrazine-induced experimental rat colon carcinogenesis. Mol Cell Biochem 410, 37–54 (2015). https://doi.org/10.1007/s11010-015-2536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2536-6

Keywords

Navigation