Skip to main content

Advertisement

Log in

Modulation of apoptosis by sulforaphane is associated with PGC-1α stimulation and decreased oxidative stress in cardiac myoblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sulforaphane is a naturally occurring isothiocyanate capable of stimulating cellular antioxidant defenses and inducing phase 2 detoxifying enzymes, which can protect cells against oxidative damage. Oxidative stress and apoptosis are intimately involved in the pathophysiology of cardiac diseases. Although sulforaphane is known for its anticancer benefits, its role in cardiac cells is just emerging. The aim of the present study was to investigate whether sulforaphane can modulate oxidative stress, apoptosis, and correlate with PGC-1α, a transcriptional cofactor involved in energy metabolism. H9c2 cardiac myoblasts were incubated with R-sulforaphane 5 µmol/L for 24 h. Cell viability, ANP gene expression, oxidative stress and apoptosis markers, and protein expression of PGC-1α were studied. In cells treated with sulforaphane, cellular viability increased (12 %) and ANP gene expression decreased (46 %) compared to control cells. Moreover, sulforaphane induced a significant increase in superoxide dismutase (103 %), catalase (101 %), and glutathione S-transferase (72 %) activity, reduced reactive oxygen species levels (15 %) and lipid peroxidation (65 %), as well as stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (4-fold). Sulforaphane also promoted an increase in the expression of the anti-apoptotic protein Bcl-2 (60 %), decreasing the Bax/Bcl-2 ratio. Active Caspase 3\7 and p-JNK/JNK were also reduced by sulforaphane, suggesting a reduction in apoptotic signaling. This was associated with an increased protein expression of PGC-1α (42 %). These results suggest that sulforaphane offers cytoprotection to cardiac cells by activating PGC1-α, reducing oxidative stress, and decreasing apoptosis signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(Suppl 1):S128–S138

    PubMed  Google Scholar 

  2. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64(9):1105–1127

    Article  CAS  PubMed  Google Scholar 

  3. Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen JG, Chen TY, Fahey JW, Talalay P (2013) Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr Chem 329:163–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Negrette-Guzmán M, Huerta-Yepez S, Tapia E, Pedraza-Chaverri J (2013) Modulation of mitochondrial functions by the indirect antioxidant sulforaphane: a seemingly contradictory dual role and an integrative hypothesis. Free Radic Biol Med 65:1078–1089

    Article  PubMed  Google Scholar 

  5. Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M (2005) PGC-1alpha regulates the mitochondria antioxidant defense system in vascular endothelial cells. Cardiovasc Res 66(3):562–573

    Article  CAS  PubMed  Google Scholar 

  6. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408

    Article  CAS  PubMed  Google Scholar 

  7. Lu Z, Xu X, Hu X, Fassett J, Zhu G, Tao Y, Li J, Huang Y, Zhang P, Zhao B, Chen Y (2010) PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal 13(7):1011–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Distefano G, Sciacca P (2012) Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure. Ital J Pediatr 38:41

    Article  PubMed Central  PubMed  Google Scholar 

  9. Abbate A, Narula J (2012) Role of apoptosis in adverse ventricular remodeling. Heart Fail Clin 8(1):79–86

    Article  PubMed  Google Scholar 

  10. Sawyer DB (2011) Oxidative stress in heart failure: what are we missing? Am J Med Sci 342(2):120–124

    Article  PubMed Central  PubMed  Google Scholar 

  11. Tsutsui H, Kinugawa S, Matsushima S (2008) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81(3):449–456

    Article  PubMed  Google Scholar 

  12. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2007) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374

    Article  Google Scholar 

  13. Rowe GC, Jiang A, Arany Z (2010) PGC-1 coactivators in cardiac development and disease. Circ Res 107(7):825–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ramjiawan A, Bagchi RA, Albak L, Czubryt MP (2012) Mechanism of cardiomyocyte PGC-1α gene regulation by ERRα. Cell Biol 91(3):148–154

    Google Scholar 

  15. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM (2005) Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 1(4):259–271

    Article  CAS  PubMed  Google Scholar 

  16. Brose RD, Shin G, McGuinness MC, Schneidereith T, Purvis S, Dong GX, Keefer J, Spencer F, Smith KD (2012) Activation of the stress proteome as a mechanism for small molecule therapeutics. Hum Mol Genet 21(19):4237–4252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bryan S, Yang G, Wang R, Khaper N (2011) Cystathionine gamma-lyase-deficient smooth muscle cells exhibit redox imbalance and apoptosis under hypoxic stress conditions. Exp Clin Cardiol 16(4):e36–e41

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Shewchuk LJ, Bryan S, Ulanova M, Khaper N (2010) Integrin β3 prevents apoptosis of HL-1 cardiomyocytes under conditions of oxidative stress. Can J Physiol Pharmacol 88(3):324–330

    Article  CAS  PubMed  Google Scholar 

  19. Anestopoulos I, Kavo A, Tentes I, Kortsaris A, Panayiotidis M, Lazou A, Pappa A (2013) Silibinin protects H9c2 cardiac cells from oxidative stress and inhibits phenylephrine-induced hypertrophy: potential mechanisms. J Nutr Biochem 24(3):586–594

    Article  CAS  PubMed  Google Scholar 

  20. Marklund S (1985) Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, pp 243–247

    Google Scholar 

  21. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  22. Mannervik B, Guthenberg C (1981) Glutathione transferase. Methods Enzymol 77:231–235

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver and muscle. Free Radic Biol Med 10:93–100

    Article  CAS  PubMed  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  25. Mallik A, Bryan S, Puukila S, Chen A, Khaper N (2011) Efficacy of Pt-modified TiO(2) nanoparticles in cardiac cells. Exp Clin Cardiol 16(1):6–10

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  27. Guerrero-Beltrán CE, Calderón-Oliver M, Tapia E, Medina-Campos ON, Sánchez-González DJ, Martínez-Martínez CM, Ortiz-Vega KM, Franco M, Pedraza-Chaverri J (2010) Sulforaphane protects against cisplatin-induced nephrotoxicity. Toxicol Lett 192(3):278–285

    Article  PubMed  Google Scholar 

  28. Angeloni C, Leoncini E, Malaguti M, Angelini S, Hrelia P, Hrelia S (2009) Modulation of phase II enzymes by sulforaphane: implications for its cardioprotective potential. J Agric Food Chem 57(12):5615–5622

    Article  CAS  PubMed  Google Scholar 

  29. Pham NA, Jacobberger JW, Schimmer AD, Cao P, Gronda M, Hedley DW (2004) The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol Cancer Ther 3(10):1239–1248

    CAS  PubMed  Google Scholar 

  30. Tang L, Zhang Y (2005) Mitochondria are the primary target in isothiocyanate-induced apoptosis in human bladder cancer cells. Mol Cancer Ther 4(8):1250–1259

    Article  CAS  PubMed  Google Scholar 

  31. Lee YJ, Lee SH (2011) Sulforaphane induces antioxidative and antiproliferative responses by generating reactive oxygen species in human bronchial epithelial BEAS-2B cells. J Korean Med Sci 26(11):1474–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269(2):291–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wu QQ, Zong J, Gao L, Dai J, Yang Z, Xu M, Fang Y, Ma ZG, Tang QZ (2014) Sulforaphane protects H9c2 cardiomyocytes from angiotensin II-induced hypertrophy. Herz 39(3):390–396

    Article  PubMed  Google Scholar 

  34. Bai Y, Cui W, Xin Y, Miao X, Barati MT, Zhang C, Chen Q, Tan Y, Cui T, Zheng Y, Cai L (2013) Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation. J Mol Cell Cardiol 57:82–95

    Article  CAS  PubMed  Google Scholar 

  35. Wang G, Hamid T, Keith RJ, Zhou G, Partridge CR, Xiang X, Kingery JR, Lewis RK, Li Q, Rokosh DG, Ford R, Spinale FG, Riggs DW, Srivastava S, Bhatnagar A, Bolli R, Prabhu SD (2010) Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation 121(17):1912–1925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Melo LG, Agrawal R, Zhang L, Rezvani M, Mangi AA, Ehsan A, Griese DP, Dell’Acqua G, Mann MJ, Oyama J, Yet SF, Layne MD, Perrella MA, Dzau VJ (2002) Gene therapy strategy forlong-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 105(5):602–607

    Article  CAS  PubMed  Google Scholar 

  37. Yeh CH, Chen TP, Wang YC, Lin YM, Lin PJ (2009) HO-1 activation can attenuate cardiomyocytic apoptosis via inhibition of NF-kappaB and AP-1 translocation following cardiac global ischemia and reperfusion. J Surg Res 155(1):147–156

    Article  CAS  PubMed  Google Scholar 

  38. Muslin AJ (2008) MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond) 115(7):203–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z (1999) Regulation of JNK signaling by GSTp. EMBO J 18(5):1321–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wang T, Arifoglu P, Ronai Z, Tew KD (2001) Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem 276(24):20999–21003

    Article  CAS  PubMed  Google Scholar 

  41. Leoncini E, Malaguti M, Angeloni C, Motori E, Fabbri D, Hrelia S (2011) Cruciferous vegetable phytochemical sulforaphane affects phase II enzyme expression and activity in rat cardiomyocytes through modulation of Akt signaling pathway. J Food Sci 76(7):H175–H181

    Article  CAS  PubMed  Google Scholar 

  42. Kolwicz SC Jr, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113(5):603–616

    Article  CAS  PubMed  Google Scholar 

  43. Kim HK, Song IS, Lee SY, Jeong SH, Lee SR, Heo HJ, Thu VT, Kim N, Ko KS, Rhee BD, Jeong DH, Kim YN, Han J (2014) B7-H4 downregulation induces mitochondrial dysfunction and enhances doxorubicin sensitivity via the cAMP/CREB/PGC1-α signaling pathway in HeLa cells. Pflugers Arch - Eur J Physiol 466:2323–2338

  44. Lynn EG, Stevens MV, Wong RP, Carabenciov D, Jacobson J, Murphy E, Sack MN (2010) Transient upregulation of PGC-1alpha diminishes cardiac ischemia tolerance via upregulation of ANT1. J Mol Cell Cardiol 49(4):693–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Fink BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116(3):615–622

    Article  Google Scholar 

  46. Dam AD, Mitchell AS, Quadrilatero J (2013) Induction of mitochondrial biogenesis protects against caspase-dependent and caspase-independent apoptosis in L6 myoblasts. Biochim Biophys Acta 1833(12):3426–3435

    Article  CAS  PubMed  Google Scholar 

  47. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297(8):842–857

    Article  CAS  PubMed  Google Scholar 

  48. Ye Y, Li J, Yuan Z (2013) Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS ONE 8(2):e56803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Brazilian Research Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS), as well as the Northern Ontario School of Medicine. Technical assistance from Tânia Fernandes, Sílvia Guimarães, and Lucas Barbosa is acknowledged. We acknowledge intellectual contribution from Prof. Dr. Maria Flávia Ribeiro, Cláudio Felipe K. Rocha, and Dr. Carmem Sartório. We would also like to thank the Laboratory of Molecular Biology, Endocrinology and Tumor (Labimet, UFRGS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neelam Khaper or Adriane Belló-Klein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, R.O., Bonetto, J.H., Baregzay, B. et al. Modulation of apoptosis by sulforaphane is associated with PGC-1α stimulation and decreased oxidative stress in cardiac myoblasts. Mol Cell Biochem 401, 61–70 (2015). https://doi.org/10.1007/s11010-014-2292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2292-z

Keywords

Navigation