Skip to main content

Advertisement

Log in

Nuclear translocation of p19INK4d in response to oxidative DNA damage promotes chromatin relaxation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

DNA is continuously exposed to damaging agents that can lead to changes in the genetic information with adverse consequences. Nonetheless, eukaryotic cells have mechanisms such as the DNA damage response (DDR) to prevent genomic instability. The DNA of eukaryotic cells is packaged into nucleosomes, which fold the genome into highly condensed chromatin, but relatively little is known about the role of chromatin accessibility in DNA repair. p19INK4d, a cyclin-dependent kinase inhibitor, plays an important role in cell cycle regulation and cellular DDR. Extensive data indicate that p19INK4d is a critical factor in the maintenance of genomic integrity and cell survival. p19INK4d is upregulated by various genotoxics, improving the repair efficiency for a variety of DNA lesions. The evidence of p19INK4d translocation into the nucleus and its low sequence specificity in its interaction with DNA prompted us to hypothesize that p19INK4d plays a role at an early stage of cellular DDR. In the present study, we demonstrate that upon oxidative DNA damage, p19INK4d strongly binds to and relaxes chromatin. Furthermore, in vitro accessibility assays show that DNA is more accessible to a restriction enzyme when a chromatinized plasmid is incubated in the presence of a protein extract with high levels of p19INK4d. Nuclear protein extracts from cells overexpressing p19INK4d are better able to repair a chromatinized and damaged plasmid. These observations support the notion that p19INK4d would act as a chromatin accessibility factor that allows the access of the repair machinery to the DNA damage site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

INK4:

Inhibitor of cyclin-dependent kinase 4

CDK:

Cyclin-dependent kinase

MNase:

Micrococcal nuclease

DDR:

DNA damage response

OGG1:

8-Oxoguanine DNA glycosylase 1

References

  1. Levy-Wilson B, Fortier C, Blackhart BD, McCarthy BJ (1988) DNase I- and micrococcal nuclease-hypersensitive sites in the human apolipoprotein B gene are tissue specific. Mol Cell Biol 8:71–80

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Friedberg EC (2003) DNA damage and repair. Nature 421:436–440

    Article  PubMed  Google Scholar 

  3. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Barzilai A (2010) DNA damage, neuronal and glial cell death and neurodegeneration. Apoptosis 15:1371–1381

    Article  CAS  PubMed  Google Scholar 

  5. Meek DW (2009) Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9:714–723

    CAS  PubMed  Google Scholar 

  6. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  CAS  PubMed  Google Scholar 

  7. Mallette FA, Gaumont-Leclerc MF, Ferbeyre G (2007) The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21:43–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zhivotovsky B, Kroemer G (2004) Apoptosis and genomic instability. Nat Rev Mol Cell Biol 5:752–762

    Article  CAS  PubMed  Google Scholar 

  9. Green CM, Almouzni G (2002) When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep 3:28–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Polo SE, Almouzni G (2007) Chromatin dynamics during the repair of DNA lesions. Med Sci (Paris) 23:29–31

    Article  Google Scholar 

  11. Soria G, Polo SE, Almouzni G (2012) Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 46:722–734

    Article  CAS  PubMed  Google Scholar 

  12. Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L (2001) UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J 20:3187–3196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kikuchi M, Okumura F, Tsukiyama T, Watanabe M, Miyajima N, Tanaka J, Imamura M, Hatakeyama S (2009) TRIM24 mediates ligand-dependent activation of androgen receptor and is repressed by a bromodomain-containing protein, BRD7, in prostate cancer cells. Biochim Biophys Acta 1793:1828–1836

    Article  CAS  PubMed  Google Scholar 

  14. Loizou JI, Murr R, Finkbeiner MG, Sawan C, Wang ZQ, Herceg Z (2006) Epigenetic information in chromatin: the code of entry for DNA repair. Cell Cycle 5:696–701

    Article  CAS  PubMed  Google Scholar 

  15. Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ, Herceg Z (2006) Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 8:91–99

    Article  CAS  PubMed  Google Scholar 

  16. Rubbi CP, Milner J (2003) p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J 22:975–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kuo WH, Wang Y, Wong RP, Campos EI, Li G (2007) The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA. Exp Cell Res 313:1628–1638

    Article  CAS  PubMed  Google Scholar 

  18. Roussel MF (1999) The INK4 family of cell cycle inhibitors in cancer. Oncogene 18:5311–5317

    Article  CAS  PubMed  Google Scholar 

  19. Pei XH, Xiong Y (2005) Biochemical and cellular mechanisms of mammalian CDK inhibitors: a few unresolved issues. Oncogene 24:2787–2795

    Article  CAS  PubMed  Google Scholar 

  20. Canepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, Ogara MF (2007) INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 59:419–426

    Article  CAS  PubMed  Google Scholar 

  21. Al-Mohanna MA, Al-Khalaf HH, Al-Yousef N, Aboussekhra A (2007) The p16INK4a tumor suppressor controls p21WAF1 induction in response to ultraviolet light. Nucleic Acids Res 35:223–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ceruti JM, Scassa ME, Flo JM, Varone CL, Canepa ET (2005) Induction of p19INK4d in response to ultraviolet light improves DNA repair and confers resistance to apoptosis in neuroblastoma cells. Oncogene 24:4065–4080

    Article  CAS  PubMed  Google Scholar 

  23. Ceruti JM, Scassa ME, Marazita MC, Carcagno AC, Sirkin PF, Canepa ET (2009) Transcriptional upregulation of p19INK4d upon diverse genotoxic stress is critical for optimal DNA damage response. Int J Biochem Cell Biol 41:1344–1353

    Article  CAS  PubMed  Google Scholar 

  24. Varone CL, Canepa ET (1997) Evidence that protein kinase C is involved in delta-aminolevulinate synthase expression in rat hepatocytes. Arch Biochem Biophys 341:259–266

    Article  CAS  PubMed  Google Scholar 

  25. Mendez J, Stillman B (2000) Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20:8602–8612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Frenster JH, Allfrey VG, Mirsky AE (1963) Repressed and active chromatin isolated from interphase lymphocytes. Proc Natl Acad Sci USA 50:1026–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10:105–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Amouroux R, Campalans A, Epe B, Radicella JP (2010) Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions. Nucleic Acids Res 38:2878–2890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kamakaka RT, Bulger M, Kaufman PD, Stillman B, Kadonaga JT (1996) Postreplicative chromatin assembly by Drosophila and human chromatin assembly factor 1. Mol Cell Biol 16:810–817

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Shaffer CD, Wuller JM, Elgin SC (1994) Raising large quantities of Drosophila for biochemical experiments. Methods Cell Biol 44:99–108

    Article  CAS  PubMed  Google Scholar 

  31. Bonte E, Becker PB (2009) Preparation of chromatin assembly extracts from preblastoderm Drosophila embryos. Methods Mol Biol 523:1–10

    Article  CAS  PubMed  Google Scholar 

  32. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Aboussekhra A, Biggerstaff M, Shivji MK, Vilpo JA, Moncollin V, Podust VN, Protic M, Hubscher U, Egly JM, Wood RD (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868

    Article  CAS  PubMed  Google Scholar 

  34. Ballmaier D, Epe B (2006) DNA damage by bromate: mechanism and consequences. Toxicology 221:166–171

    Article  CAS  PubMed  Google Scholar 

  35. Lindahl T, Karran P, Wood RD (1997) DNA excision repair pathways. Curr Opin Genet Dev 7:158–169

    Article  CAS  PubMed  Google Scholar 

  36. Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    Article  CAS  PubMed  Google Scholar 

  37. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Marazita MC, Ogara MF, Sonzogni SV, Marti M, Dusetti NJ, Pignataro OP, Canepa ET (2012) CDK2 and PKA mediated-sequential phosphorylation is critical for p19INK4d function in the DNA damage response. PLoS One 7:e35638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ogara MF, Sirkin PF, Carcagno AL, Marazita MC, Sonzogni SV, Ceruti JM, Canepa ET (2013) Chromatin relaxation-mediated induction of p19INK4d increases the ability of cells to repair damaged DNA. PLoS One 8:e61143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wang QE, Han C, Zhang B, Sabapathy K, Wani AA (2012) Nucleotide excision repair factor XPC enhances DNA damage-induced apoptosis by downregulating the antiapoptotic short isoform of caspase-2. Cancer Res 72:666–675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Povirk LF (1996) DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. Mutat Res 355:71–89

    Article  PubMed  Google Scholar 

  42. Dedon PC, Goldberg IH (1992) Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chem Res Toxicol 5:311–332

    Article  CAS  PubMed  Google Scholar 

  43. Legarza K, Yang LX (2006) New molecular mechanisms of action of camptothecin-type drugs. Anticancer Res 26:3301–3305

    CAS  PubMed  Google Scholar 

  44. Pommier Y, Redon C, Rao VA, Seiler JA, Sordet O, Takemura H, Antony S, Meng L, Liao Z, Kohlhagen G, Zhang H, Kohn KW (2003) Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat Res 532:173–203

    Article  CAS  PubMed  Google Scholar 

  45. Dingwall C, Laskey RA (1991) Nuclear targeting sequences—a consensus? Trends Biochem Sci 16:478–481

    Article  CAS  PubMed  Google Scholar 

  46. Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–306

    Article  CAS  PubMed  Google Scholar 

  47. Lim MA, Kikani CK, Wick MJ, Dong LQ (2003) Nuclear translocation of 3′-phosphoinositide-dependent protein kinase 1 (PDK-1): a potential regulatory mechanism for PDK-1 function. Proc Natl Acad Sci USA 100:14006–14011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dinant C, Houtsmuller AB, Vermeulen W (2008) Chromatin structure and DNA damage repair. Epigenetics Chromatin 1:9

    Article  PubMed Central  PubMed  Google Scholar 

  49. Papamichos-Chronakis M, Peterson CL (2013) Chromatin and the genome integrity network. Nat Rev Genet 14:62–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor B, Giacosa S, D’Urso A, Naar AM, Kingston R, Rippe K, Mostoslavsky R (2013) SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell 51:454–468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Lai W, Li H, Liu S, Tao Y (2013) Connecting chromatin modifying factors to DNA damage response. Int J Mol Sci 14:2355–2369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. van Attikum H, Gasser SM (2005) ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4:1011–1014

    Article  PubMed  Google Scholar 

  53. Peterson CL, Cote J (2004) Cellular machineries for chromosomal DNA repair. Genes Dev 18:602–616

    Article  CAS  PubMed  Google Scholar 

  54. Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119:767–775

    Article  CAS  PubMed  Google Scholar 

  55. van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777–788

    Article  PubMed  Google Scholar 

  56. Smeenk G, Wiegant WW, Vrolijk H, Solari AP, Pastink A, van Attikum H (2010) The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. J Cell Biol 190:741–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Van Den Broeck A, Nissou D, Brambilla E, Eymin B, Gazzeri S (2012) Activation of a Tip60/E2F1/ERCC1 network in human lung adenocarcinoma cells exposed to cisplatin. Carcinogenesis 33:320–325

    Article  Google Scholar 

  58. Sun Y, Jiang X, Chen S, Fernandes N, Price BD (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 102:13182–13187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Harte MT, O’Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT, Mullan PB, Harkin DP (2010) BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res 70:2538–2547

    Article  CAS  PubMed  Google Scholar 

  60. Drost J, Mantovani F, Tocco F, Elkon R, Comel A, Holstege H, Kerkhoven R, Jonkers J, Voorhoeve PM, Agami R, Del Sal G (2010) BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol 12:380–389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anna Campalans and Thierry Kortulewski for their help with confocal microscopy images. This work was supported by research grants from Agencia Nacional de Promoción Científica y Tecnológica (ANCYPT PICT0196), Universidad de Buenos Aires (UBACYT 284), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 567), Association de Recherche contre le Cancer (ARC n° PJA 20131200165 to JPR) and Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT-ECOS A09B01), Argentina. Exchanges between the Argentinian and French laboratories were supported by French Ministry of Foreign Affairs and Argentine Ministry of Science and through an ECOS-Sud Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo T. Cánepa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonzogni, S.V., Ogara, M.F., Castillo, D.S. et al. Nuclear translocation of p19INK4d in response to oxidative DNA damage promotes chromatin relaxation. Mol Cell Biochem 398, 63–72 (2015). https://doi.org/10.1007/s11010-014-2205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2205-1

Keywords

Navigation