Skip to main content

Advertisement

Log in

Endothelial progenitor cells as a possible component of stem cell niche to promote self-renewal of mesenchymal stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Stem cells dwell at the “stem cell niche” to accomplish a series of biological processes. The composition of the niche should be determined because the insufficient understanding of this feature limits the development in the study of stem cells. We showed in our study on mesenchymal stem cells (MSCs) that the MSCs first neighbored to CD31+ cells, which proved to be endothelial progenitor cells (EPCs), and formed a group of cell colony before they exerted their biological functions. It was further proved that EPCs have close interactions with MSCs and promoted the self-renewal of the MSCs in vitro and in vivo. Together with these achievements, we hypothesized that EPCs may be a possible biological component of the MSC stem cell niche and affect the biological processes of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Becker AJ, Mc CE, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    Article  PubMed  CAS  Google Scholar 

  2. Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62:327–336

    Article  PubMed  CAS  Google Scholar 

  3. Till JE, Mc CE (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  PubMed  CAS  Google Scholar 

  4. Wu AM, Till JE, Siminovitch L, McCulloch EA (1968) Cytological evidence for a relationship between normal hemotopoietic colony-forming cells and cells of the lymphoid system. J Exp Med 127:455–464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49. doi:10.1038/nature00870

    Article  PubMed  CAS  Google Scholar 

  6. Moore KA, Elmendorf SC (2006) Propagule vs. niche limitation: untangling the mechanisms behind plant species’ distributions. Ecol Lett 9:797–804. doi:10.1111/j.1461-0248.2006.00923.x

    Article  PubMed  Google Scholar 

  7. Terry NA, Tulina N, Matunis E, DiNardo S (2006) Novel regulators revealed by profiling Drosophila testis stem cells within their niche. Dev Biol 294:246–257. doi:10.1016/j.ydbio.2006.02.048

    Article  PubMed  CAS  Google Scholar 

  8. Wang H, Singh SR, Zheng Z, Oh SW, Chen X, Edwards K et al (2006) Rap-GEF signaling controls stem cell anchoring to their niche through regulating DE-cadherin-mediated cell adhesion in the Drosophila testis. Dev Cell 10:117–126. doi:10.1016/j.devcel.2005.11.004

    Article  PubMed  CAS  Google Scholar 

  9. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846. doi:10.1038/nature02040

    Article  PubMed  CAS  Google Scholar 

  10. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550

    Article  PubMed  CAS  Google Scholar 

  11. He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH et al (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36:1117–1121. doi:10.1038/ng1430

    Article  PubMed  CAS  Google Scholar 

  12. Holmberg J, Genander M, Halford MM, Anneren C, Sondell M, Chumley MJ et al (2006) EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell 125:1151–1163. doi:10.1016/j.cell.2006.04.030

    Article  PubMed  CAS  Google Scholar 

  13. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648. doi:10.1016/j.cell.2004.08.012

    Article  PubMed  CAS  Google Scholar 

  14. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    Article  PubMed  CAS  Google Scholar 

  15. Wu X, Pang L, Lei W, Lu W, Li J, Li Z et al (2010) Inhibition of Sca-1-positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling. Cell Stem Cell 7:571–580. doi:10.1016/j.stem.2010.09.012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Sacchetti E, Bocchio-Chiavetto L, Valsecchi P, Scassellati C, Pasqualetti P, Bonvicini C et al (2007) −G308A tumor necrosis factor alpha functional polymorphism and schizophrenia risk: meta-analysis plus association study. Brain Behav Immun 21:450–457. doi:10.1016/j.bbi.2006.11.009

    Article  PubMed  CAS  Google Scholar 

  17. Kukreti R, Dash D, Vineetha EK, Chakravarty S, Das SK, De M et al (2002) Spectrum of beta-thalassemia mutations and their association with allelic sequence polymorphisms at the beta-globin gene cluster in an Eastern Indian population. Am J Hematol 70:269–277. doi:10.1002/ajh.10117

    Article  PubMed  CAS  Google Scholar 

  18. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z et al (2009) TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15:757–765. doi:10.1038/nm.1979

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Woodfin A, Voisin MB, Nourshargh S (2007) PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 27:2514–2523. doi:10.1161/ATVBAHA.107.151456

    Article  PubMed  CAS  Google Scholar 

  20. Li ZJ, Wang ZZ, Zheng YZ, Xu B, Yang RC, Scadden DT et al (2005) Kinetic expression of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) during embryonic stem cell differentiation. J Cell Biochem 95:559–570. doi:10.1002/jcb.20436

    Article  PubMed  CAS  Google Scholar 

  21. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169

    Article  PubMed  Google Scholar 

  22. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189. doi:10.1161/01.ATV.0000073832.49290.B5

    Article  PubMed  CAS  Google Scholar 

  23. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S et al (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21:1546–1558. doi:10.1101/gad.436307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Papathanasopoulos A, Giannoudis PV (2008) Biological considerations of mesenchymal stem cells and endothelial progenitor cells. Injury 39(Suppl 2):S21–S32. doi:10.1016/S0020-1383(08)70012-3

    Article  PubMed  Google Scholar 

  25. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101:2999–3001. doi:10.1182/blood-2002-06-1830

    Article  PubMed  CAS  Google Scholar 

  26. Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A et al (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24:1020–1029. doi:10.1634/stemcells.2005-0260

    Article  PubMed  Google Scholar 

  27. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736. doi:10.1038/nri2395

    Article  PubMed  CAS  Google Scholar 

  28. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. doi:10.1080/14653240600855905

    Article  PubMed  CAS  Google Scholar 

  29. Wan M, Li C, Zhen G, Jiao K, He W, Jia X et al (2012) Injury-activated transforming growth factor beta controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells 30:2498–2511. doi:10.1002/stem.1208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Lee CH, Shah B, Moioli EK, Mao JJ (2010) CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Investig 120:3340–3349. doi:10.1172/JCI43230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Wilson A, Oser GM, Jaworski M, Blanco-Bose WE, Laurenti E, Adolphe C et al (2007) Dormant and self-renewing hematopoietic stem cells and their niches. Ann N Y Acad Sci 1106:64–75. doi:10.1196/annals.1392.021

    Article  PubMed  CAS  Google Scholar 

  32. Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2:640–653. doi:10.1002/wsbm.86

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421. doi:10.1016/j.cell.2005.10.041

    Article  PubMed  CAS  Google Scholar 

  34. Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM et al (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25:238–243. doi:10.1038/nbt1281

    Article  PubMed  CAS  Google Scholar 

  35. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447. doi:10.1038/nature06685

    Article  PubMed  CAS  Google Scholar 

  36. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834. doi:10.1038/nature09262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97:3422–3427. doi:10.1073/pnas.070046397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Zampetaki A, Kirton JP, Xu Q (2008) Vascular repair by endothelial progenitor cells. Cardiovasc Res 78:413–421. doi:10.1093/cvr/cvn081

    Article  PubMed  CAS  Google Scholar 

  39. Charwat S, Gyongyosi M, Lang I, Graf S, Beran G, Hemetsberger R et al (2008) Role of adult bone marrow stem cells in the repair of ischemic myocardium: current state of the art. Exp Hematol 36:672–680. doi:10.1016/j.exphem.2008.01.005

    Article  PubMed  CAS  Google Scholar 

  40. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    Article  PubMed  CAS  Google Scholar 

  41. Shirota T, He H, Yasui H, Matsuda T (2003) Human endothelial progenitor cells seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng 1:127–136. doi:10.1089/107632703762687609

    Article  Google Scholar 

  42. Aguirre A, Planell JA, Engel E (2010) Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem Biophys Res Commun 400:284–291. doi:10.1016/j.bbrc.2010.08.073

    Article  PubMed  CAS  Google Scholar 

  43. Fedorovich NE, Haverslag RT, Dhert WJ, Alblas J (2010) The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs. Tissue Eng A 16:2355–2367. doi:10.1089/ten.TEA.2009.0603

    Article  CAS  Google Scholar 

  44. Seebach C, Henrich D, Kahling C, Wilhelm K, Tami AE, Alini M et al (2010) Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng A 16:1961–1970. doi:10.1089/ten.TEA.2009.0715

    Article  CAS  Google Scholar 

  45. Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I (2006) The role of mesenchymal stem cells in haemopoiesis. Blood Rev 20:161–171. doi:10.1016/j.blre.2005.11.002

    Article  PubMed  CAS  Google Scholar 

  46. Minuth WW, Denk L (2014) Structural links between the renal stem/progenitor cell niche and the organ capsule. Histochem Cell Biol 141:459–471. doi:10.1007/s00418-014-1179-0

    Article  PubMed  CAS  Google Scholar 

  47. Eggermann J, Kliche S, Jarmy G, Hoffmann K, Mayr-Beyrle U, Debatin KM et al (2003) Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovasc Res 58:478–486

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the National Natural Science Foundation of China (31271458); the Science and Technology Program of Xinjiang Production and Construction Corps (2011AB034, 2014AB047) and Scientific Research Foundation for the returned overseas Chinese scholars, Ministry of Human Resources and Social Security of the People’s Republic of China (RSLX201201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueling Chen or Xiangwei Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xian, L., Lin, Z. et al. Endothelial progenitor cells as a possible component of stem cell niche to promote self-renewal of mesenchymal stem cells. Mol Cell Biochem 397, 235–243 (2014). https://doi.org/10.1007/s11010-014-2191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2191-3

Keywords

Navigation