Skip to main content

Advertisement

Log in

Neuropeptide Y reduces the expression of PLCB2, PLCD1 and selected PLC genes in cultured human endothelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Endothelial cells (EC) are the first elements exposed to mediators circulating in the bloodstream, and react to stimulation with finely tuned responses mediated by different signal transduction pathways, leading the endothelium to adapt. Neuropeptide Y (NPY), the most abundant peptide in heart and brain, is mainly involved in the neuroendocrine regulation of the stress response. The regulatory roles of NPY depend on many factors, including its enzymatic processing, receptor subtypes and related signal transduction systems, including the phosphoinositide (PI) pathway and related phospholipase C (PI-PLC) family of enzymes. The panel of expression of PI-PLC enzymes differs comparing quiescent versus differently stimulated human EC. Growing evidences indicate that the regulation of the expression of PLC genes, which codify for PI-PLC enzymes, might act as an additional mechanism of control of the PI signal transduction pathway. NPY was described to potentiate the activation of PI-PLC enzymes in different cell types, including EC. In the present experiments, we stimulated human umbilical vein EC using different doses of NPY in order to investigate a possible role upon the expression PLC genes. NPY reduced the overall transcription of PLC genes, excepting for PLCE. The most significant effects were observed for PLCB2 and PLCD1, both isoforms recruited by means of G-proteins and G-protein-coupled receptors. NPY behavior was comparable with other PI-PLC interacting molecules that, beside the stimulation of phospholipase activity, also affect the upcoming enzymes’ production acting upon gene expression. That might represent a mode to regulate the activity of PI-PLC enzymes after activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Witt SH, Buchmann AF, Blomeyer D, Nieratschker V, Treutlein J, Esser G, Schmidt MH, Bidlingmaier M, Wiedemann K, Rietschel M, Laucht M, Wüst S, Zimmermann US (2011) An interaction between a neuropeptide Y gene polymorphism and early adversity modulates endocrine stress responses. Psychoneuroendocrinology 36(7):1010–1020

    Article  CAS  PubMed  Google Scholar 

  2. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493

    Article  CAS  PubMed  Google Scholar 

  3. Wang L, Hauser ER, Shah SH, Pericak-Vance MA, Haynes C et al (2007) Peakwide mapping on chromosome 3q13 identifies the kalirin gene as a novel candidate gene for coronary artery disease. Am J Hum Genet 80:650–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hauser ER, Crossman DC, Granger CB, Haines JL, Jones CJ et al (2004) A genomewide scan for early-onset coronary artery disease in 438 families: the GENECARD study. Am J Hum Genet 75:436–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lin S, Boey D, Herzog H (2004) NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 38:189–200

    Article  CAS  PubMed  Google Scholar 

  6. Allen AR, Kelso EJ, Bell D, Zhao Y, Dickson P, McDermott BJ (2006) Modulation of contractile function through neuropeptide Y receptors during development of cardiomyocyte hypertrophy. J Pharmacol Exp Ther 319(3):1286–1296

    Article  CAS  PubMed  Google Scholar 

  7. Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D et al (2005) A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J Exp Med 202:1527–1538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Pedrazzini T, Brunner HR, Waeber B (1993) Neuropeptide Y and cardiovascular regulation. Curr Opin Nephrol Hypertens 2:106–113

    Article  CAS  PubMed  Google Scholar 

  9. Zukowska-Grojec Z, Karwatowska-Prokopczuk E, Rose W, Rone J, Movafagh S et al (1998) Neuropeptide Y: a novel angiogenic factor from the sympathetic nerves and endothelium. Circ Res 83:187–195

    Article  CAS  PubMed  Google Scholar 

  10. Myers AK, Farhat MY, Vaz CA, Keiser HR, Zukowska-Grojec Z (1988) Release of immunoreactive-neuropeptide by rat platelets. Biochem Biophys Res Commun 155:118–122

    Article  CAS  PubMed  Google Scholar 

  11. Pettersson-Fernholm K, Karvonen MK, Kallio J, Forsblom CM, Koulu M et al (2004) Leucine 7 to proline 7 polymorphism in the preproneuropeptide Y is associated with proteinuria, coronary heart disease, and glycemic control in type 1 diabetic patients. Diabetes Care 27:503–509

    Article  CAS  PubMed  Google Scholar 

  12. Wallerstedt SM, Skrtic S, Eriksson AL, Ohlsson C, Hedner T (2004) Association analysis of the polymorphism T1128C in the signal peptide of neuropeptide Y in a Swedish hypertensive population. J Hypertens 22:1277–1281

    Article  CAS  PubMed  Google Scholar 

  13. Pedrazzini T, Seydoux J, Kunstner P, Aubert JF, Grouzmann E et al (1998) Cardiovascular response, feeding behavior and locomotor activity in mice lacking the NPY Y1 receptor. Nat Med 4:722–726

    Article  CAS  PubMed  Google Scholar 

  14. Pedrazzini T (2004) Importance of NPY Y1 receptor-mediated pathways: assessment using NPY Y1 receptor knockouts. Neuropeptides 38:267–275

    Article  CAS  PubMed  Google Scholar 

  15. Colmers WF, Lukowiak K, Pittman QJ (1985) Neuropeptide Y reduces orthodromically evoked population spike in rat hippocampal CA1 by a possibly presynaptic mechanism. Brain Res 346(2):404–408

    Article  CAS  PubMed  Google Scholar 

  16. Ewald DA, Matthies HJ, Perney TM, Walker MW, Miller RJ (1988) The effect of down regulation of protein kinase C on the inhibitory modulation of dorsal root ganglion neuron Ca2+ currents by neuropeptide Y. J Neurosci 8(7):2447–2451

    CAS  PubMed  Google Scholar 

  17. Michel MC, Beck-Sickinger AG, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T (1998) XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50:143–150

    CAS  PubMed  Google Scholar 

  18. Michel MC (1991) Receptors for neuropeptide Y: multiple subtypes and multiple second messengers. Trends Pharmacol Sci 12:389–394

    Article  CAS  PubMed  Google Scholar 

  19. Motulsky HJ, Michel MC (1988) Neuropeptide Y mobilizes Ca2+ and inhibits adenylate cyclase in human erythroleukemia cells. Am J Physiol 255:E880–E885

    CAS  PubMed  Google Scholar 

  20. Movafagh S, Hobson JP, Spiegel S, Kleinman HK, Zukowska Z (2006) Neuropeptide Y induces migration, proliferation, and tube formation of endothelial cells bimodally via Y1, Y2, and Y5 receptors. FASEB J 20(11):1924–1926

    Article  CAS  PubMed  Google Scholar 

  21. Gloe T, Pohl U (2002) Laminin binding conveys mechanosensing in endothelial cells. News Physiol Sci 17:166–169

    CAS  PubMed  Google Scholar 

  22. Christ M, Wehling M (1998) Cardiovascular steroid actions: swift swallows or sluggish snails? Cardiovasc Res 40:34–44

    Article  CAS  PubMed  Google Scholar 

  23. Grienddling KK, Alexander WR (1996) Endothelial control of the cardiovascular system: recent advances. FASEB J 10:283–292

    Google Scholar 

  24. Lo Vasco VR (2010) Signaling in the genomic era. J Cell Commun Signal 4(3):115–117

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lo Vasco VR, Leopizzi M, Chiappetta C, Puggioni C, Della Rocca C, Businaro R (2013) Lipopolysaccharide down-regulates the expression of selected cells. Inflammation 36(4):862–868

    Article  CAS  PubMed  Google Scholar 

  26. Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca C, Businaro R (2014) Fibroblast growth factor acts upon the transcription of phospholipase C genes in human umbilical vein endothelial cells. Mol Cell Biochem 388(1):51–59

    Article  CAS  PubMed  Google Scholar 

  27. Tatemoto K, Mutt V (1981) Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the glucagon–secretin family. Proc Natl Acad Sci USA 78(11):6603–6607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bader R, Bettio A, Beck-Sickinger AG, Zerbe O (2001) Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection. J Mol Biol 305(2):307–329

    Article  CAS  PubMed  Google Scholar 

  29. Brown HA, Gutowski S, Moomaw CR, Slaugh -ter C, Sternweis PC (1993) ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75:1137–1144

    Article  CAS  PubMed  Google Scholar 

  30. Rameh LE, Cantley LC (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 274:8347–8350

    Article  CAS  PubMed  Google Scholar 

  31. Berridge MJ, Dupont G (1994) Spatial and temporal signalling by calcium. Curr Opin Cell Biol 6(2):267–274

    Article  CAS  PubMed  Google Scholar 

  32. Divecha N, Irvine RF (1995) Phospholipid signaling. Cell 80(2):269–278

    Article  CAS  PubMed  Google Scholar 

  33. Hisatsune C, Nakamura K, Kuroda Y et al (2005) Amplification of Ca2+ signaling by diacylglycerol mediated inositol 1,4,5-trisphosphate production. J Biol Chem 280(12):11723–11730

    Article  CAS  PubMed  Google Scholar 

  34. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  CAS  PubMed  Google Scholar 

  35. Irvine RF (2003) Nuclear lipid signalling. Nat Rev Mol Cell Biol 4(5):349–360

    Article  CAS  PubMed  Google Scholar 

  36. Bunney TD, Katan M (2011) PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 36(2):88–96

    Article  CAS  PubMed  Google Scholar 

  37. Suh PG, Park J, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun S, Ryu SH (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434

    Article  CAS  PubMed  Google Scholar 

  38. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235(4787):442–447

    Article  CAS  PubMed  Google Scholar 

  39. Sato Y, Rifkin DB (1988) Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J Cell Biol 107(3):1199–1205

    Article  CAS  PubMed  Google Scholar 

  40. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  CAS  PubMed  Google Scholar 

  41. De Smedt H, Parys JB (1995) Molecular and functional diversity of inositol triphosphate-induced Ca(2+) release. Verh K Acad Geneeskd Belg 57:423–458

    PubMed  Google Scholar 

  42. Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9:484–496

    CAS  PubMed  Google Scholar 

  43. Lo Vasco VR (2012) The Phosphoinositide pathway and the signal transduction network in neural development. Neurosci Bull 28(6):789–800

    Article  PubMed  Google Scholar 

  44. Lo Vasco VR, Fabrizi C, Artico M, Cocco L, Billi AM, Fumagalli L, Manzoli FA (2007) Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes. J Cell Biochem 100(4):952–959

    Article  CAS  PubMed  Google Scholar 

  45. Lo Vasco VR, Fabrizi C, Panetta B, Fumagalli L, Cocco L (2010) Expression pattern and sub cellular distribution of Phosphoinositide specific Phospholipase C enzymes after treatment with U-73122 in rat astrocytoma cells. J Cell Biochem 110(4):1005–1012

    Article  CAS  PubMed  Google Scholar 

  46. Lo Vasco VR, Fabrizi C, Fumagalli L, Cocco L (2010) Expression of phosphoinositide specific phospholipase C isoenzymes in cultured astrocytes activated after stimulation with Lipopolysaccharide. J Cell Biochem 109(5):1006–1012

    CAS  PubMed  Google Scholar 

  47. Lobaugh LA, Blackshear PJ (1990) Neuropeptide Y stimulation of myosin light chain phosphorylation in cultured aortic smooth muscle cells. J Biol Chem 265:18393–18399

    CAS  PubMed  Google Scholar 

  48. Duckles SP, Buxton IL (1994) Neuropeptide Y potentiates norepinephrine-stimulated inositol phosphate production in the rat tail artery. Life Sci 55:103–109

    Article  CAS  PubMed  Google Scholar 

  49. Reynolds EE, Yokota S (1988) Neuropeptide Y receptor-effector coupling mechanisms in cultured vascular smooth muscle cells. Biochem Biophys Res Commun 151:919–925

    Article  CAS  PubMed  Google Scholar 

  50. Selbie LA, Darby K, Schmitz PC, Browne CL, Herzog H, Shine J (1995) Synergistic interaction of Y1-neuropeptide Y and alpha 1b-adrenergic receptors in the regulation of phospholipase C, protein kinase C, and arachidonic acid production. J Biol Chem 270:11789–11796

    Article  CAS  PubMed  Google Scholar 

  51. Mihara S, Shigeri Y, Fujimoto M (1989) Neuropeptide Y-induced intracellular Ca2+ increases in vascular smooth muscle cells. FEBS Lett 259:79–82

    Article  CAS  PubMed  Google Scholar 

  52. Goldberg Y, Taimor G, Piper HM, Schluter KD (1998) Intracellular signaling leads to the hypertrophic effect of neuropeptide Y. Am J Physiol 275:C1207–C1215

    CAS  PubMed  Google Scholar 

  53. Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258(5082):607–614

    Article  CAS  PubMed  Google Scholar 

  54. Lo Vasco VR, Pacini L, Di Raimo T, D’Arcangelo D, Businaro R (2011) Expression of phosphoinositide-specific phospholipase C isoforms in HUVEC. J Clin Pathol 64(10):911–915

    Article  CAS  PubMed  Google Scholar 

  55. Selbie LA, King NV, Dickenson JM, Hill SJ (1997) Role of G-protein beta gamma subunits in the augmentation of P2Y2 (P2U) receptor-stimulated responses by neuropeptide Y Y1 Gi/o-coupled receptors. Biochem J 328:153–158

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Lopez I, Mak E, Ding J, Hamm H, Lomasney JW (2001) A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 276(4):2758–65

  57. Taylor SJ, Chae HZ, Rhee SG, Exton JH (1991) Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature 350:516–518

    Article  CAS  PubMed  Google Scholar 

  58. Smrcka AV, Hepler JR, Brown KO, Sternweis PC (1991) Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251:804–807

    Article  CAS  PubMed  Google Scholar 

  59. Smrcka AV, Sternweis PC (1993) Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. J Biol Chem 268:9667–9674

    CAS  PubMed  Google Scholar 

  60. Runnels LW, Scarlata SF (1999) Determination of the affinities between heterotrimeric G protein subunits and their phospholipase C-beta effectors. Biochemistry 38:1488–1496

    Article  CAS  PubMed  Google Scholar 

  61. Lee CW, Lee KH, Lee SB, Park D, Rhee SG (1994) Regulation of phospholipase C-beta 4 by ribonucleotides and the alpha subunit of Gq. J Biol Chem 269:25335–25338

    CAS  PubMed  Google Scholar 

  62. Hwang JI, Heo K, Shin KJ, Kim E, Yun C, Ryu SH, Shin HS, Suh PG (2000) Regulation of phospholipase C-beta 3 activity by Na+/H+ exchanger regulatory factor 2. J Biol Chem 275:16632–16637

    Article  CAS  PubMed  Google Scholar 

  63. Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P (1992) Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature 360:684–686

    Article  CAS  PubMed  Google Scholar 

  64. Rhee SG, Kim H, Suh PG, Choi WC (1991) Multiple forms of phosphoinositide-specific phospholipase C and different modes of activation. Biochem Soc Trans 19(2):337–341

    CAS  PubMed  Google Scholar 

  65. Lee SB, Shin SH, Hepler JR, Gilman AG, Rhee SG (1993) Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits. J Biol Chem 268:25952–25957

    CAS  PubMed  Google Scholar 

  66. Wang T, Pentyala S, Rebecchi MJ, Scarlata S (1999) Differential association of the pleckstrin homology domains of phospholipases C-beta 1, C-beta 2, and C-delta 1 with lipid bilayers and the beta gamma subunits of heterotrimeric G proteins. Biochemistry 38(5):1517–1524

    Article  CAS  PubMed  Google Scholar 

  67. Wang T, Dowal L, El-Maghrabi MR, Rebecchi M, Scarlata S (2000) The pleckstrin homology domain of phospholipase C-beta(2) links the binding of gbetagamma to activation of the catalytic core. J Biol Chem 275(11):7466–7469

    Article  CAS  PubMed  Google Scholar 

  68. Panchenko MP, Saxena K, Li Y, Charnecki S, Sternweis PM, Smith TF, Gilman AG, Kozasa T, Neer EJ (1998) Sites important for PLCbeta2 activation by the G protein betagamma subunit map to the sides of the beta propeller structure. J Biol Chem 273:28298–28304

    Article  CAS  PubMed  Google Scholar 

  69. Lo Vasco VR, Leopizzi M, Chiappetta C, Businaro R, Polonia P, Della Rocca C, Litta P (2012) Expression of phosphoinositide-specific phospholipase C enzymes in normal endometrium and in endometriosis. Fertil Steril 98(2):410–414

    Article  CAS  PubMed  Google Scholar 

  70. Ghosh S, Pawelczyk T, Lowenstein JM (1997) Phospholipase C isoforms 1 and 3 from 1106 A.-M. Ochocka and T. Pawelczyk 2003 human fibroblast. High-yield expression in Escherichia coli, simple purification, and properties. Protein Expre Purif 9:262–278

    Article  CAS  Google Scholar 

  71. Suh P-G, Ryu SH, Moon KH, Suh HW, Rhee SG (1988) Cloning and sequence of multiple forms of phospholipase C. Cell 54:161–169

    Article  CAS  PubMed  Google Scholar 

  72. Kriz R, Lin LL, Sultzman L, Ellis C, Heldin C-H, Pawson T, Knopf J (1990) Phospholipase C isozymes: structural and functional similarities. Proto-Oncogenes Cell Dev Ciba Found Symp 150:112–127

  73. Meldrum E, Kriz RW, Totty N, Parker PJ (1991) A second gene product of the inositol-phospholipid-specific phospholipase C δ subclass. Eur J Biochem 196:159–165

    Article  CAS  PubMed  Google Scholar 

  74. Lee SB, Rhee SG (1996) Molecular cloning, splice variants, expression and purification of phospholipase C-δ4. J Biol Chem 271:25–31

    Article  CAS  PubMed  Google Scholar 

  75. Bristol A, Hall SM, Kriz RW, Stahl ML, Fan YS, Byers MG, Eddy RL, Shows TB, Knopf JL (1998) Phospholipase C-148: chromosomal location and deletion mapping of functional domains. Cold Spring Harb Symp Quant Biol. 53:915–920

    Article  Google Scholar 

  76. Fukami K, Yoshida M, Inoue T, Kurokawa M, Fissore RA, Yoshida N, Mikoshiba K, Takenawa T (2003) Phospholipase C δ4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol 161:79–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Lo Vasco VR, Leopizzi M, Chiappetta C, Puggioni C, Di Cristofano C, Della Rocca C (2013) Expression of phosphoinositide-specific phospholipase C enzymes in human osteosarcoma cell lines. J Cell Commun Signal 7(2):141–150

    Article  PubMed Central  PubMed  Google Scholar 

  78. Yamamoto T, Takeuchi H, Kanematsu T, Allen V, Yagisawa H, Kikkawa U, Watanabe Y, Nakasima A, Katan M, Hirata M (1999) Involvement of EF hand motifs in the Ca(2+)-dependent binding of the pleckstrin homology domain to phosphoinositides. Eur J Biochem 265(1):481–490

    Article  CAS  PubMed  Google Scholar 

  79. Lomasney JW, Cheng HF, Roffler SR, King K (1999) Activation of phospholipase C delta1 through C2 domain by a Ca(2 +)-enzyme-phosphatidylserine ternary complex. J Biol Chem 274(31):21995–22001

    Article  CAS  PubMed  Google Scholar 

  80. Feng JF, Rhee SG, Im MJ (1996) Evidence that phospholipase delta1 is the effector in the Gh (transglutaminase II)-mediated signaling. J Biol Chem 271:16451–16454

    Article  CAS  PubMed  Google Scholar 

  81. Park ES, Won JH, Han KJ, Suh PG, Ryu SH, Lee HS, Yun HY, Kwon NS, Baek KJ (1998) Phospholipase C-delta1 and oxytocin receptor signalling: evidence of its role as an effector. Biochem J 331:283–289

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Flick JS, Thorner J (1998) An essential function of a phosphoinositide-specific phospholipase C is relieved by inhibition of a cyclin-dependent protein kinase in the yeast Saccharomyces cerevisiae. Genetics 148(1):33–47

    CAS  PubMed Central  PubMed  Google Scholar 

  83. York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    Article  CAS  PubMed  Google Scholar 

  84. Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 92:3903–3907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Shimohama S, Perry G, Takenawa T, Whitehouse PJ, Miyoshi K, Suenaga T, Matsumoto S, Nishimura M, Kimura J (1993) Abnormal accumulation of phospholipase C-delta in filamentous inclusions of human neurodegenerative diseases. Neurosci Lett 162:183–186

    Article  CAS  PubMed  Google Scholar 

  86. Nakano T, Osanai T, Tomita H, Sekimata M, Homma Y, Okumura K (2002) Enhanced activity of variant phospholipase C-δ1 protein (R257H) detected in patients with coronary artery spasm. Circulation 105:2024–2029

    Article  CAS  PubMed  Google Scholar 

  87. Tachibana T, Noguchi K, Ruda MA (2002) Analysis of gene expression following spinal cord injury in rat using complementary DNA microarray. Neurosci Lett 327:133–137

    Article  CAS  PubMed  Google Scholar 

  88. Kosugi T, Osanai T, Kamada T, Nakano T, Okumara K (2003) Phospholipase C activity in skin fibroblasts obtained from patients with essential hypertension. J Hypertens 21:583–590

    Article  CAS  PubMed  Google Scholar 

  89. Wu GD, Zhou HJ, Wu XH (2004) Apoptosis of human umbilical vein endothelial cells induced by artesunate. Vascul Pharmacol 41(6):205–212

    Article  CAS  PubMed  Google Scholar 

  90. Hwang KC, Lim S, Kwon HM, Bae YS, Kang SM, Chung KH, Graham RM, Rhee SG, Jang Y (2004) Phospholipase C-delta1 rescues intracellular Ca2 + overload in ischemic heart and hypoxic neonatal cardiomyocytes. J Steroid Biochem Mol Biol 91:131–138

    Article  CAS  PubMed  Google Scholar 

  91. Asemu G, Tappia PS, Dhalla NS (2003) Identification of the changes in phospholipase C isozymes in ischemic–reperfused rat heart. Arch Biochem Biophys 411:174–182

    Article  CAS  PubMed  Google Scholar 

  92. Bazan NG, Tu B (2002) Rodriguez de Turco EB. What synaptic lipid signaling tells us about seizure-induced damage and epileptogenesis. Prog Brain Res 135:175–185

    Article  CAS  PubMed  Google Scholar 

  93. Sun GY, Hsu CY (1996) Poly-phosphoinositide-mediated messengers in focal cerebral ischemia and reperfusion. J Lipid Mediat Cell Signal 14:137–145

    Article  CAS  PubMed  Google Scholar 

  94. Shimohama S, Homma Y, Suenaga T, Fujimoto S, Taniguchi T, Araki W, Yamaoka Y, Takenawa T, Kimura J (1991) Aberrant accumulation of phospholipase C-delta in Alzheimer brains. Am J Pathol 139:737–742

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Shimohama S, Perry G, Richey P, Praprotnik P, Takenawa T, Fukami K, Whitehouse PJ, Kimura J (1995) Characterization of the association of phospholipase C-delta with Alzheimer neurofibrillary tangles. Brain Res 669:217–224

    Article  CAS  PubMed  Google Scholar 

  96. Shimohama S, Akaike A, Tamura Y, Matsushima H, Kume T, Fujimoto S, Takenawa T, Kimura J (1995) Glutamate-induced antigenic changes of phospholipase C-delta in cultured cortical neurons. J Neurosci Res 41:418–426

    Article  CAS  PubMed  Google Scholar 

  97. Ochocka AM, Pawelczyk T (2003) Isozymes delta of phosphoinositide-specific phospholipase C and their role in signal transduction in the cell. Acta Biochim Pol 50(4):1097–1110

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Lo Vasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Vasco, V.R., Leopizzi, M., Puggioni, C. et al. Neuropeptide Y reduces the expression of PLCB2, PLCD1 and selected PLC genes in cultured human endothelial cells. Mol Cell Biochem 394, 43–52 (2014). https://doi.org/10.1007/s11010-014-2079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2079-2

Keywords

Navigation