Skip to main content
Log in

Study of differential effects of TGF-beta3/BMP2 on chondrogenesis in MSC cells by gene microarray data analysis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In order to explore the differential effects of TGF-beta3 and BMP2 on chondrogenesis in mesenchymal stem cells (MSCs), the gene expression profiles of MSC treated with TGF-beta3 and BMP2 were subjected to systematic analysis on the gene and functional level. The gene expression profiles of MSCs (downloaded from Gene Expression Omnibus database) in the early and later stages, induced with TGF-beta2 and BMP2, were analyzed using packages within R software and the differentially expressed genes (DEGs) were screened. The DEGs both in the two experimental groups were subjected to Gene Ontology and pathway enrichment analysis. The protein–protein interaction (PPI) networks of the DEGs were constructed using cytoscape software. Among the DEGs, 1,194 genes were up-regulated and 580 genes were down-regulated. The up-regulated genes were mainly enriched in the TGF-beta and cell cycle signaling pathways and down-regulated genes were mainly enriched in the insulin-mediated signal pathway, metabolic pathway of fructose and mannose, and glycolysis/gluconeogenesis pathway. Based on the PPI network analysis, the genes of KIAA0101, NEDD4, and TINF2 were confirmed to be important on chondrogenesis. The analysis of DEGs both in TGF-beta3 and BMP2 treated MSCs indicates that the genes are mainly involved in the cell cycle and intracellular signaling pathways. Also the similar gene expression profile can be achieved by transcription factors or microRNAs (miR-199a-5p and miR-31-5p) based on our prediction, which can provide a new approach for the treatment of cartilage injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13(4):456–460

    Article  PubMed  CAS  Google Scholar 

  2. Buckwalter J, Mankin H (1997) Articular cartilage. Part II: degeneration and osteoarthrosis, repair, regeneration, and transplantation. J Bone Joint Surg Am 79(4):612–632

    Google Scholar 

  3. Guilak F, Fermor B, Keefe FJ, Kraus VB, Olson SA, Pisetsky DS, Setton LA, Weinberg JB (2004) The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res 423:17–26

    Article  PubMed  Google Scholar 

  4. Francis Suh J-K, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598

    Article  CAS  Google Scholar 

  5. O’Driscoll SW (1998) Current concepts review-the healing and regeneration of articular cartilage*. J Bone Joint Surg 80(12):1795–1812

    PubMed  Google Scholar 

  6. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  PubMed  CAS  Google Scholar 

  7. Shapiro F, Koide S, Glimcher M (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75(4):532

    PubMed  CAS  Google Scholar 

  8. Lee JW, Kim YH, Kim SH, Han SH, Hahn SB (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 45(Suppl):S41–S47

    Article  Google Scholar 

  9. Li W-J, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26(6):599–609

    Article  PubMed  CAS  Google Scholar 

  10. Grimaud E, Heymann D, Rédini F (2002) Recent advances in TGF-β effects on chondrocyte metabolism: potential therapeutic roles of TGF-β in cartilage disorders. Cytokine Growth Factor Rev 13(3):241–257

    Article  PubMed  CAS  Google Scholar 

  11. Majumdar MK, Wang E, Morris EA (2001) BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol 189(3):275–284

    Article  PubMed  CAS  Google Scholar 

  12. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  13. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33(20):e175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Da Wei Huang BTS, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  16. Parikh JR, Xia Y, Marto JA (2012) Multi-edge gene set networks reveal novel insights into global relationships between biological themes. PLoS One 7(9):e45211

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Chatr-aryamontri A, Breitkreutz B-J, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41(D1):D816–D823

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

    Article  PubMed  CAS  Google Scholar 

  21. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Sci Signal 313(5795):1929

    CAS  Google Scholar 

  22. Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, Tsai W-T, Chen G-Z, Lee C-J, Chiu C-M (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39(suppl 1):D163–D169

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Chang JT, Nevins JR (2006) GATHER: a systems approach to interpreting genomic signatures. Bioinformatics 22(23):2926–2933

    Article  PubMed  CAS  Google Scholar 

  24. Furusawa S, Nakano S, Wu J, Sakaguchi S, Takayanagi M, Sasaki KI, Satoh S (2001) Apoptosis induced by doxorubicin and cinchonine in P388 multidrug-resistant cells. J Pharm Pharmacol 53(7):1029–1039

    Article  PubMed  CAS  Google Scholar 

  25. Hu F, Gartenhaus RB, Zhao XF, Fang H-B, Minkove S, Poss DE, Rapoport AP (2012) c-Myc and E2F1 drive PBK/TOPK expression in high-grade malignant lymphomas. Leuk Res 37(4):447–454

    Article  PubMed  CAS  Google Scholar 

  26. Scheijen B, Bronk M, van der Meer T, Bernards R (2003) Constitutive E2F1 overexpression delays endochondral bone formation by inhibiting chondrocyte differentiation. Mol Cell Biol 23(10):3656–3668

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Jain M, Zhang L, Patterson EE, Kebebew E (2011) KIAA0101 is overexpressed, and promotes growth and invasion in adrenal cancer. PLoS One 6(11):e26866

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Hosokawa M, Takehara A, Matsuda K, Eguchi H, Ohigashi H, Ishikawa O, Shinomura Y, Imai K, Nakamura Y, Nakagawa H (2007) Oncogenic role of KIAA0101 interacting with proliferating cell nuclear antigen in pancreatic cancer. Cancer Res 67(6):2568–2576

    Article  PubMed  CAS  Google Scholar 

  29. Shahdadfar A, Frønsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem cells 23(9):1357–1366

    Article  PubMed  CAS  Google Scholar 

  30. Liu L, Chen X, Xie S, Zhang C, Qiu Z, Zhu F (2012) Variant 1 of KIAA0101, overexpressed in hepatocellular carcinoma, prevents doxorubicin-induced apoptosis by inhibiting p53 activation. Hepatology 56(5):1760–1769

    Article  PubMed  CAS  Google Scholar 

  31. Fan C-D, Lum MA, Xu C, Black JD, Wang X (2013) Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response. J Biol Chem 288(3):1674–1684

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Milkereit R, Rotin D (2011) A role for the ubiquitin ligase Nedd4 in membrane sorting of LAPTM4 proteins. PLoS One 6(11):e27478

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Nethe M, de Kreuk B-J, Tauriello DV, Anthony EC, Snoek B, Stumpel T, Salinas PC, Maurice MM, Geerts D, Deelder AM (2012) Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell–cell contacts. J Cell Sci 125(14):3430–3442

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Xin Z-T, Carroll KA, Kumar N, Song K, Ly H (2011) Transcriptional activation of TINF2, a gene encoding the telomere-associated protein TIN2, by Sp1 and NF-κB factors. PLoS One 6(6):e21333

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Yamada M, Tsuji N, Nakamura M, Moriai R, Kobayashi D, Yagihashi A, Watanabe N (2002) Down-regulation of TRF1, TRF2 and TIN2 genes is important to maintain telomeric DNA for gastric cancers. Anticancer Res 22(6A):3303

    PubMed  CAS  Google Scholar 

  36. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Lin EA, Kong L, Bai X-H, Luan Y, Liu C-j (2009) miR-199a*, a bone morphogenic protein 2-responsive microRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem 284(17):11326–11335

    Article  PubMed Central  CAS  Google Scholar 

  38. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(suppl 1):D149–D153

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Gao J, Yang T, Han J, Yan K, Qiu X, Zhou Y, Fan Q, Ma B (2011) MicroRNA expression during osteogenic differentiation of human multipotent mesenchymal stromal cells from bone marrow. J Cell Biochem 112(7):1844–1856

    Article  PubMed  CAS  Google Scholar 

  40. Malladi P, Xu Y, Chiou M, Giaccia AJ, Longaker MT (2007) Hypoxia inducible factor-1α deficiency affects chondrogenesis of adipose-derived adult stromal cells. Tissue Eng 13(6):1159–1171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was sponsored by the National Science & Technology Major Project of China (Key Innovative Drug Development), No.2011ZX09202-301-14 and Shanghai JiaoTong University Innovation Fund for “Cross Research of Medicine and Engineering(Science)”, No.YG2012MS45, was also greatly appreciated.

Conflict of interest

The authors declare that there are no any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yantian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sang, Y., Zang, W., Yan, Y. et al. Study of differential effects of TGF-beta3/BMP2 on chondrogenesis in MSC cells by gene microarray data analysis. Mol Cell Biochem 385, 191–198 (2014). https://doi.org/10.1007/s11010-013-1827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1827-z

Keywords

Navigation