Skip to main content

Advertisement

Log in

Upregulation of microRNA-375 is associated with poor prognosis in pediatric acute myeloid leukemia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A genome-wide serum miRNA expression analysis previously showed the upregulation of microRNA-375 (miR-375) in acute myeloid leukemia (AML) patients compared with healthy controls. The aim of this study was to investigate the expression patterns and the prognostic relevance of miR-375 in pediatric AML. Expression levels of miR-375 in bone marrow mononuclear cells were detected by real-time quantitative PCR in a cohort of 106 patients with newly diagnosed pediatric AML. Expression levels of miR-375 in the bone marrow of pediatric AML patients were significantly higher than those in normal controls (P < 0.001). Then, miR-375 upregulation occurred more frequently in French–American–British classification subtype M7 than in other subtypes (P < 0.001). Regarding to cytogenetic risk, the expression levels of miR-375 in pediatric AML patients with unfavorable karyotypes were dramatically higher than those in intermediate and favorable groups (P = 0.002). Moreover, high miR-375 expression was significantly associated with shorter relapse-free survival (P < 0.001) and overall survival (P < 0.001) in pediatric AML patients. Multivariate analysis further identified miR-375 expression and cytogenetics risk as independent prognostic factors for both relapse-free survival and overall survival. In particular, the prognostic relevance of miR-375 expression was more obvious in the subgroup of patients with intermediate-risk cytogenetics. Our findings suggest for the first time that the upregulation of miR-375 may be one of the molecular mechanisms involved in the development and progression of pediatric AML. Since its correlation with poor relapse-free survival and overall survival, miR-375 may be a novel biomarker to improve the management of pediatric AML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Estey EH (2013) Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol 88:318–327

    Article  PubMed  CAS  Google Scholar 

  2. Ganetsky A (2012) The role of decitabine for the treatment of acute myeloid leukemia. Ann Pharmacother 46:1511–1517

    Article  PubMed  Google Scholar 

  3. Puumala SE, Ross JA, Aplenc R, Spector LG (2013) Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer 60:728–733

    Article  PubMed  Google Scholar 

  4. Danen-van Oorschot AA, Kuipers JE, Arentsen-Peters S et al (2012) Differentially expressed miRNAs in cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Pediatr Blood Cancer 58:715–721

    Article  PubMed  Google Scholar 

  5. Liu X, Liu L, Xu Q, Wu P, Zuo X, Ji A (2012) MicroRNA as a novel drug target for cancer therapy. Expert Opin Biol Ther 12:573–580

    Article  PubMed  CAS  Google Scholar 

  6. Esteller M (2011) Non coding RNAs in human disease. Nat Rev Genet 12(861):874

    Google Scholar 

  7. van Kouwenhove M, Kedde M, Agami R (2011) MicroRNA regulation by RNA binding proteins and its implications for cancer. Nat Rev Cancer 11:644–656

    Article  PubMed  Google Scholar 

  8. Dela Cruz F, Matushansky I (2011) MicroRNAs in chromosomal translocation associated solid tumors: learning from sarcomas. Discov Med 12:307–317

    PubMed  Google Scholar 

  9. Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6:590–610

    Article  PubMed  CAS  Google Scholar 

  10. Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93:98–104

    Article  PubMed  CAS  Google Scholar 

  11. Marcucci G, Maharry KS, Metzeler KH et al (2013) Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients. J Clin Oncol 31:2086–2093

    Google Scholar 

  12. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  PubMed  CAS  Google Scholar 

  13. Lopotová T, Záčková M, Klamová H, Moravcová J (2011) MicroRNA-451 in chronic myeloid leukemia: miR-451–BCR–ABL regulatory loop? Leuk Res 35:974–977

    Article  PubMed  Google Scholar 

  14. Bai J, Guo A, Hong Z, Kuai W (2012) Upregulation of microRNA-100 predicts poor prognosis in patients with pediatric acute myeloid leukemia. Onco Targets Ther 5:213–219

    PubMed  Google Scholar 

  15. Zhu C, Wang Y, Kuai W, Sun X, Chen H, Hong Z (2013) Prognostic value of miR-29a expression in pediatric acute myeloid leukemia. Clin Biochem 46:49–53

    Article  PubMed  CAS  Google Scholar 

  16. Zhi F, Cao X, Xie X et al (2013) Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia. PLoS ONE 8:e56718

    Article  PubMed  CAS  Google Scholar 

  17. Croce CM (2013) MicroRNA dysregulation in acute myeloid leukemia. J Clin Oncol 31:2065–2066

    Google Scholar 

  18. Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  PubMed  CAS  Google Scholar 

  19. Siow M, Karen-Ng L, Vincent-Chong V et al (2013) Dysregulation of miR-31 and miR-375 expression is associated with clinical outcomes in oral carcinoma. Oral Dis (in press)

  20. Chang C, Shi H, Wang C et al (2012) Correlation of microRNA-375 downregulation with unfavorable clinical outcome of patients with glioma. Neurosci Lett 531:204–208

    Article  PubMed  CAS  Google Scholar 

  21. Xu Y, Deng Y, Yan X, Zhou T (2011) Targeting miR-375 in gastric cancer. Expert Opin Ther Targets 15:961–972

    Article  PubMed  CAS  Google Scholar 

  22. Komatsu S, Ichikawa D, Takeshita H et al (2012) Prognostic impact of circulating miR-21 and miR-375 in plasma of patients with esophageal squamous cell carcinoma. Expert Opin Biol Ther 12(Suppl 1):S53–S59

    Article  PubMed  CAS  Google Scholar 

  23. Wang F, Li Y, Zhou J et al (2011) miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol 179:2580–2588

    Article  PubMed  CAS  Google Scholar 

  24. Yabushita S, Fukamachi K, Tanaka H et al (2012) Circulating microRNAs in serum of human K-ras oncogene transgenic rats with pancreatic ductal adenocarcinomas. Pancreas 41:1013–1018

    Article  PubMed  CAS  Google Scholar 

  25. Li Y, Jiang Q, Xia N, Yang H, Hu C (2012) Decreased expression of microRNA-375 in nonsmall cell lung cancer and its clinical significance. J Int Med Res 40:1662–1669

    Article  PubMed  CAS  Google Scholar 

  26. Chang Y, Yan W, He X et al (2012) miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology 143(177–87):e8

    PubMed  Google Scholar 

  27. Zhao H, Zhu L, Jin Y, Ji H, Yan X, Zhu X (2012) miR-375 is highly expressed and possibly transactivated by achaete–scute complex homolog 1 in small-cell lung cancer cells. Acta Biochim Biophys Sin (Shanghai) 44:177–182

    Article  CAS  Google Scholar 

  28. Dai X, Chiang Y, Wang Z et al (2012) Expression levels of microRNA-375 in colorectal carcinoma. Mol Med Rep 5:1299–1304

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijing Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Hong, Z., Gao, F. et al. Upregulation of microRNA-375 is associated with poor prognosis in pediatric acute myeloid leukemia. Mol Cell Biochem 383, 59–65 (2013). https://doi.org/10.1007/s11010-013-1754-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1754-z

Keywords

Navigation