Skip to main content
Log in

O-GlcNAcylation of αB-crystallin regulates its stress-induced translocation and cytoprotection

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Under normal conditions, the ubiquitously expressed αB-crystallin functions as a chaperone. αB-crystallin has been implicated in a variety of pathologies, consistent with a build-up of protein aggregates, such as neuromuscular disorders, myofibrillar myopathies, and cardiomyopathies. αB-crystallins’ cardioprotection is partially attributed to its translocation and binding to cytoskeletal elements in response to stress. The triggers for this translocation are not clearly understood. In the heart, αB-crystallin undergoes at least three significant post-translational modifications: phosphorylation at ser-45 and 59 and O-GlcNAcylation (O-linked attachment of the monosaccharide β-N-acetyl-glucosamine) at thr-170. Whether phosphorylation status drives translocation remains controversial. Therefore, we evaluated the role of αB-crystallins’ O-GlcNAcylation in its stress-induced translocation and cytoprotection in cardiomyocytes under stress. Immunoblotting and precipitation experiments with anti-O-GlcNAc antibody (CTD110.6) and glycoprotein staining (Pro-Q Emerald) both demonstrate robust stress-induced O-GlcNAcylation of αB-crystallin. A non-O-GlcNAcylatable αB-crystallin mutant (αB-T170A) showed diminished translocation in response to heat shock and robust phosphorylation at both ser-45 and ser-59. Cell survival assays show a loss of overexpression-associated cytoprotection with the non-glycosylatable mutant to multiple stresses. While ectopic expression of wild-type αB-crystallin strongly stabilized ZsProSensor, a fusion protein rapidly degraded by the proteasome, the non-O-GlcNAcylatable version did not. Therefore, we believe the O-GlcNAcylation of αB-crystallin is a dynamic and important regulator of both its localization and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

O-GlcNAc:

O linked N-acetyl glucosamine

OGT:

O-GlcNAc transferase

GCA:

O-GlcNAcase

References

  1. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  2. Kato K, Shinohara H, Kurobe N, Inaguma Y, Shimizu K, Ohshima K (1991) Tissue distribution and developmental profiles of immunoreactive alpha B crystallin in the rat determined with a sensitive immunoassay system. Biochim Biophys Acta 1074:201–208

    Article  PubMed  CAS  Google Scholar 

  3. Iwaki T, Kume-Iwaki A, Liem RK, Goldman JE (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 57:71–78

    Article  PubMed  CAS  Google Scholar 

  4. Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K (1993) Alpha B crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease. J Neurol Sci 119:203–208

    Article  PubMed  CAS  Google Scholar 

  5. Renkawek K, de Jong WW, Merck KB, Frenken CW, van Workum FP, Bosman GJ (1992) alpha B-crystallin is present in reactive glia in Creutzfeldt-Jakob disease. Acta Neuropathol 83:324–327

    Article  PubMed  CAS  Google Scholar 

  6. Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95

    Article  PubMed  CAS  Google Scholar 

  7. Selcen D, Engel AG (2003) Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations. Ann Neurol 54:804–810

    Article  PubMed  CAS  Google Scholar 

  8. Simon S, Fontaine JM, Martin JL, Sun X, Hoppe AD, Welsh MJ, Benndorf R, Vicart P (2007) Myopathy-associated alphaB-crystallin mutants: abnormal phosphorylation, intracellular location, and interactions with other small heat shock proteins. J Biol Chem 282:34276–34287

    Article  PubMed  CAS  Google Scholar 

  9. Inagaki N, Hayashi T, Arimura T, Koga Y, Takahashi M, Shibata H, Teraoka K, Chikamori T, Yamashina A, Kimura A (2006) Alpha B-crystallin mutation in dilated cardiomyopathy. Biochem Biophys Res Commun 342:379–386

    Article  PubMed  CAS  Google Scholar 

  10. den Engelsman J, Keijsers V, de Jong WW, Boelens WC (2003) The small heat-shock protein alpha B-crystallin promotes FBX4-dependent ubiquitination. J Biol Chem 278:4699–4704

    Article  Google Scholar 

  11. Kamradt MC, Chen F, Cryns VL (2001) The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276:16059–16063

    Article  PubMed  CAS  Google Scholar 

  12. van den IP, Wheelock R, Prescott A, Russell P, Quinlan RA (2003) Nuclear speckle localisation of the small heat shock protein alpha B-crystallin and its inhibition by the R120G cardiomyopathy-linked mutation. Exp Cell Res 287:249–261

    Article  Google Scholar 

  13. van Rijk AE, Stege GJ, Bennink EJ, May A, Bloemendal H (2003) Nuclear staining for the small heat shock protein alphaB-crystallin colocalizes with splicing factor SC35. Eur J Cell Biol 82:361–368

    Article  PubMed  Google Scholar 

  14. Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS, Benjamin IJ, Nguyen L, Gerard RD, Levine B, Rothermel BA, Hill JA (2008) Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci USA 105:9745–9750

    Article  PubMed  CAS  Google Scholar 

  15. Chiesi M, Longoni S, Limbruno U (1990) Cardiac alpha-crystallin. III. Involvement during heart ischemia. Mol Cell Biochem 97:129–136

    Article  PubMed  CAS  Google Scholar 

  16. Eaton P, Fuller W, Bell JR, Shattock MJ (2001) AlphaB crystallin translocation and phosphorylation: signal transduction pathways and preconditioning in the isolated rat heart. J Mol Cell Cardiol 33:1659–1671

    Article  PubMed  CAS  Google Scholar 

  17. Bennardini F, Wrzosek A, Chiesi M (1992) Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res 71:288–294

    Article  PubMed  CAS  Google Scholar 

  18. Golenhofen N, Htun P, Ness W, Koob R, Schaper W, Drenckhahn D (1999) Binding of the stress protein alpha B-crystallin to cardiac myofibrils correlates with the degree of myocardial damage during ischemia/reperfusion in vivo. J Mol Cell Cardiol 31:569–580

    Article  PubMed  CAS  Google Scholar 

  19. Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A, Zhang XQ, Stevenson TJ, Peshock RM, Leopold JA, Barry WH, Loscalzo J, Odelberg SJ, Benjamin IJ (2007) Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130:427–439

    Article  PubMed  CAS  Google Scholar 

  20. Jin JK, Whittaker R, Glassy MS, Barlow SB, Gottlieb RA, Glembotski CC (2008) Localization of phosphorylated alphaB-crystallin to heart mitochondria during ischemia-reperfusion. Am J Physiol Heart Circ Physiol 294:H337–H344

    Article  PubMed  CAS  Google Scholar 

  21. Whittaker R, Glassy MS, Gude N, Sussman MA, Gottlieb RA, Glembotski CC (2009) Kinetics of the translocation and phosphorylation of alphaB-crystallin in mouse heart mitochondria during ex vivo ischemia. Am J Physiol Heart Circ Physiol 296:H1633–H1642

    Article  PubMed  CAS  Google Scholar 

  22. Lutsch G, Vetter R, Offhauss U, Wieske M, Grone HJ, Klemenz R, Schimke I, Stahl J, Benndorf R (1997) Abundance and location of the small heat shock proteins HSP25 and alphaB-crystallin in rat and human heart. Circulation 96:3466–3476

    Article  PubMed  CAS  Google Scholar 

  23. Ito H, Kamei K, Iwamoto I, Inaguma Y, Nohara D, Kato K (2001) Phosphorylation-induced change of the oligomerization state of alpha B- crystallin. J Biol Chem 276:5346–5352

    Article  PubMed  CAS  Google Scholar 

  24. Roquemore EP, Chevrier MR, Cotter RJ, Hart GW (1996) Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin. Biochemistry 35:3578–3586

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong SC, Shivell CL, Ganote CE (2000) Differential translocation or phosphorylation of alpha B crystallin cannot be detected in ischemically preconditioned rabbit cardiomyocytes. J Mol Cell Cardiol 32:1301–1314

    Article  PubMed  CAS  Google Scholar 

  26. Roquemore EP, Dell A, Morris HR, Panico M, Reason AJ, Savoy LA, Wistow GJ, Zigler JS Jr (1992) Earles BJ and Hart GW: vertebrate lens alpha-crystallins are modified by O-linked N-acetylglucosamine. J Biol Chem 267:555–563

    PubMed  CAS  Google Scholar 

  27. Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378

    Article  PubMed  CAS  Google Scholar 

  28. Zachara NE, Hart GW (2004) O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta 1673:13–28

    Article  PubMed  CAS  Google Scholar 

  29. Liu J, Pang Y, Chang T, Bounelis P, Chatham JC, Marchase RB (2006) Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol 40:303–312

    Article  PubMed  CAS  Google Scholar 

  30. Martin JL, Bluhm WF, He H, Mestril R, Dillmann WH (2002) Mutation of COOH-terminal lysines in overexpressed alpha B-crystallin abrogates ischemic protection in cardiomyocytes. Am J Physiol Heart Circ Physiol 283:H85–H91

    PubMed  CAS  Google Scholar 

  31. Brady JP, Garland DL, Green DE, Tamm ER, Giblin FJ, Wawrousek EF (2001) AlphaB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest Ophthalmol Vis Sci 42:2924–2934

    PubMed  CAS  Google Scholar 

  32. Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279:30133–30142

    Article  PubMed  CAS  Google Scholar 

  33. Comer FI, Vosseller K, Wells L, Accavitti MA, Hart GW (2001) Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal Biochem 293:169–177

    Article  PubMed  CAS  Google Scholar 

  34. Guinez C, Losfeld ME, Cacan R, Michalski JC, Lefebvre T (2006) Modulation of HSP70 GlcNAc-directed lectin activity by glucose availability and utilization. Glycobiology 16:22–28

    Article  PubMed  CAS  Google Scholar 

  35. Liu J, Tang M, Mestril R, Wang X (2006) Aberrant protein aggregation is essential for a mutant desmin to impair the proteolytic function of the ubiquitin-proteasome system in cardiomyocytes. J Mol Cell Cardiol 40:451–454

    Article  PubMed  CAS  Google Scholar 

  36. Verschuure P, Croes Y, van den IPR, Quinlan RA, de Jong WW, Boelens WC (2002) Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition. J Mol Cell Cardiol 34:117–128

    Article  PubMed  CAS  Google Scholar 

  37. Chen Q, Liu JB, Horak KM, Zheng H, Kumarapeli AR, Li J, Li F, Gerdes AM, Wawrousek EF, Wang X (2005) Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake. Circ Res 97:1018–1026

    Article  PubMed  CAS  Google Scholar 

  38. Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273:34970–34975

    Article  PubMed  CAS  Google Scholar 

  39. MacRae TH (2000) Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas. Cell Mol Life Sci 57:899–913

    Article  PubMed  CAS  Google Scholar 

  40. Ray PS, Martin JL, Swanson EA, Otani H, Dillmann WH, Das DK (2001) Transgene overexpression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. Faseb J 15:393–402

    Article  PubMed  CAS  Google Scholar 

  41. Morrison LE, Whittaker RJ, Klepper RE, Wawrousek EF, Glembotski CC (2004) Roles for alphaB-crystallin and HSPB2 in protecting the myocardium from ischemia-reperfusion-induced damage in a KO mouse model. Am J Physiol Heart Circ Physiol 286:H847–H855

    Article  PubMed  CAS  Google Scholar 

  42. Barbato R, Menabo R, Dainese P, Carafoli E, Schiaffino S, Di Lisa F (1996) Binding of cytosolic proteins to myofibrils in ischemic rat hearts. Circ Res 78:821–828

    Article  PubMed  CAS  Google Scholar 

  43. Golenhofen N, Arbeiter A, Koob R, Drenckhahn D (2002) Ischemia-induced association of the stress protein alpha B-crystallin with I-band portion of cardiac titin. J Mol Cell Cardiol 34:309–319

    Article  PubMed  CAS  Google Scholar 

  44. Golenhofen N, Ness W, Koob R, Htun P, Schaper W, Drenckhahn D (1998) Ischemia-induced phosphorylation and translocation of stress protein alpha B-crystallin to Z lines of myocardium. Am J Physiol 274:H1457–H1464

    PubMed  CAS  Google Scholar 

  45. Cole RN, Hart GW (2001) Cytosolic O-glycosylation is abundant in nerve terminals. J Neurochem 79:1080–1089

    Article  PubMed  CAS  Google Scholar 

  46. Zhu-Mauldin X, Marsh SA, Zou L, Marchase RB, Chatham JC (2012) Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J Biol Chem 287:39094–39106

    Article  PubMed  CAS  Google Scholar 

  47. Ngoh GA, Hamid T, Prabhu SD, Jones SP (2009) O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death. Am J Physiol Heart Circ Physiol 297:H1711–H1719

    Article  PubMed  CAS  Google Scholar 

  48. Martin JL, Mestril R, Hilal-Dandan R, Brunton LL, Dillmann WH (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348

    Article  PubMed  CAS  Google Scholar 

  49. Ngoh GA, Facundo HT, Hamid T, Dillmann W, Zachara NE, Jones SP (2009) Unique hexosaminidase reduces metabolic survival signal and sensitizes cardiac myocytes to hypoxia/reoxygenation injury. Circ Res 104:41–49

    Article  PubMed  CAS  Google Scholar 

  50. Champattanachai V, Marchase RB, Chatham JC (2007) Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc. Am J Physiol Cell Physiol 292:C178–C187

    Article  PubMed  CAS  Google Scholar 

  51. Fulop N, Zhang Z, Marchase RB, Chatham JC (2007) Glucosamine cardioprotection in perfused rat heart associated with increased O-Linked N-acetylglucosamine protein modification and altered p38 activation. Am J Physiol Heart Circ Physiol 292(5):H2227–H2236

    Article  PubMed  CAS  Google Scholar 

  52. Gandy JC, Rountree AE, Bijur GN (2006) Akt1 is dynamically modified with O-GlcNAc following treatments with PUGNAc and insulin-like growth factor-1. FEBS Lett 580:3051–3058

    Article  PubMed  CAS  Google Scholar 

  53. Macauley MS, Bubb AK, Martinez-Fleites C, Davies GJ, Vocadlo DJ (2008) Elevation of global O-GlcNAc levels in 3T3-L1 adipocytes by selective inhibition of O-GlcNAcase does not induce insulin resistance. J Biol Chem 283:34687–34695

    Article  PubMed  CAS  Google Scholar 

  54. Chou TY, Hart GW, Dang CV (1995) c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem 270:18961–18965

    Article  PubMed  CAS  Google Scholar 

  55. Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW (2010) Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem 285:5204–5211

    Article  PubMed  CAS  Google Scholar 

  56. Kim HS, Kim EM, Lee J, Yang WH, Park TY, Kim YM, Cho JW (2006) Heat shock protein 60 modified with O-linked N-acetylglucosamine is involved in pancreatic beta-cell death under hyperglycemic conditions. FEBS Lett 580:2311–2316

    Article  PubMed  CAS  Google Scholar 

  57. Fulop N, Marchase RB, Chatham JC (2007) Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res 73:288–297

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Cardiovascular Institute and the Department of Physiology at Loyola University Chicago, Health Sciences Division for support of this project. A special acknowledgement is owed to the laboratories of Drs. Samarel and Mestril, for assistance with neonatal rat ventricular myocytes. The authors also thank Dr Mestril for helpful discussions. This project could not have been completed without the generous support of the Midwest Affiliate of the American Heart Association [SDG 0235411Z to JLM], the Potts Foundation, the Beck-Scanlon Cardiovascular Research Development Award, and the Marian and Ralph Falk Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jody L. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, V., Donofrio, A.J. & Martin, J.L. O-GlcNAcylation of αB-crystallin regulates its stress-induced translocation and cytoprotection. Mol Cell Biochem 379, 59–68 (2013). https://doi.org/10.1007/s11010-013-1627-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1627-5

Keywords

Navigation