Skip to main content
Log in

Decreased expression of DNA repair genes (XRCC1, ERCC1, ERCC2, and ERCC4) in squamous intraepithelial lesion and invasive squamous cell carcinoma of the cervix

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Reduced DNA repair might affect the risk of progression from infection with carcinogenic human papillomavirus (HPV), the etiologic agent for cervical cancer (CC), to persistent HPV infection, and hence to cervical pre-cancer and cancer. We assessed the variation in baseline expression of base excision repair gene XRCC1 and three nucleotide excision repair genes ERCC1, ERCC2, and ERCC4 and the risk of developing cervical cancer. A hospital-based case–control study was designed with 50 invasive cervical cancer patients, 40 squamous intraepithelial lesions (SIL) patients and 85 controls subjects. RT-qPCR and Western blotting was used to quantitate in vitro the mRNA and protein levels in fresh CC, SIL and normal cervix tissue. The levels of XRCC1, ERCC2, ERCC4, and ERCC1 transcripts and their respective proteins were lower in cervical cancer and SILs as compared to controls (p ≤ 0.001, 0.001, 0.001, and 0.025, respectively). In multivariate logistic regression analysis (adjusting for parity, age at first child birth, use of oral contraceptives, smoking status), low expression of XRCC1, ERCC2, ERCC4, and ERCC1 was associated with a significant increased risk for CC and SIL. Our results suggest that individuals whose expression of XRCC1, ERCC4, ERCC2, and ERCC1 are reduced may be at a higher risk of developing SIL which eventually leads to invasive cervical carcinoma. Moreover, independently also the reduced expression of these genes can directly lead to cervical cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Franceschi S (2005) The IACR commitment to cancer prevention: the example of papillomavirus and cervical cancer. Recent Results Cancer Res 166:277–297

    Article  PubMed  Google Scholar 

  2. Danaei G, Vander SH, Lopez AD, Murray CJ, Ezzati M (2005) Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 366:1784–1793

    Article  PubMed  Google Scholar 

  3. Herrera LA, Benitez-Bribiesca L, Mohar A, Ostrosky-Wegman P (2005) Role of infectious diseases in humans carcinogenesis. Environ Mol Mutagen 45:284–303

    Article  CAS  PubMed  Google Scholar 

  4. Zur HH (2002) Papillomavirus and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350

    Article  Google Scholar 

  5. Zur HH (2000) Papillomaviruses causing cancer: evasion from host cell control in early events in carcinogenesis. J Natl Cancer Inst 92:690–698

    Article  Google Scholar 

  6. Niwaet Y et al (2005) Association of XRCC1 Arg399Gln and OGG1 Ser326 Cys polymorphisms with the risk of cervical cancer in Japanese subjects. Gynecol Oncol 99:43–49

    Article  Google Scholar 

  7. Roszak A et al (2011) Involvement of the XRCC1 Arg399Gln gene polymorphism in the development of cervical carcinoma. Int J Biol Markers 26:216–220

    CAS  PubMed  Google Scholar 

  8. Settheetham-Ishida W et al (2011) Genetic risk of DNA repair gene polymorphisms (XRCC1 and XRCC3) for high risk human papillomavirus negative cervical cancer in Northeast Thailand. Asian Pac J Cancer Prev 12:963–966

    PubMed  Google Scholar 

  9. Wang SS et al (2010) Common genetic variants and risk for HPV persistence and progression to cervical cancer. PLoS ONE 1:e8667

    Article  Google Scholar 

  10. Zhang L et al (2012) Single nucleotide polymorphisms in DNA repair genes and risk of cervical cancer: a case–control study. Oncol Lett 3:351–362

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Britten RA et al (2000) ERCC1 expression as a molecular marker of cisplatin resistance in human cervical tumor cells. Int J Cancer 89:453–457

    Article  CAS  PubMed  Google Scholar 

  12. Caldecott KW (2007) Mammalian single-strand break repair: mechanisms and links with chromatin. DNA Repair (Amst) 6:443–453

    Article  CAS  Google Scholar 

  13. de Boe J, Hoeijmakers JH (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21:453–460

    Article  Google Scholar 

  14. Helleday T, Lo J, van Gent DC et al (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 6:923–935

    Article  CAS  Google Scholar 

  15. Rajewsky MF, Engelbergs J, Thomale J et al (2000) DNA repair: counteragent in mutagenesis and carcinogenesis-accomplice in cancer therapy resistance. Mutat Res 462:101–105

    Article  CAS  PubMed  Google Scholar 

  16. Vidal AE, Boiteux S, Hickson ID et al (2001) XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein–protein interactions. EMBO J 20:6530–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thompson LH, West MG (2000) XRCC1 keeps DNA from getting stranded. Mutat Res 459:1–18

    Article  CAS  PubMed  Google Scholar 

  18. Shen MR, Jones IM, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58:604–608

    CAS  PubMed  Google Scholar 

  19. Busch D, Greiner C, Lewis K et al (1989) Summary of complementation groups of UV-sensitive CHO cell mutants isolated by large-scale screening. Mutagenesis 4:349–354

    Article  CAS  PubMed  Google Scholar 

  20. Lee TI, Young RA (2007) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77–137

    Article  Google Scholar 

  21. Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218:652–656

    Article  CAS  PubMed  Google Scholar 

  22. Wei Q, Cheng L, Hong WK et al (1996) Reduced DNA repair capacity in lung cancer patients. Cancer Res 56:4103–4107

    CAS  PubMed  Google Scholar 

  23. Cheng L, Eicher SA, Guo Z et al (1998) Reduced DNA repair capacity in head and neck cancer patients. Cancer Epidemiol Biomarkers Prev 7:465–468

    CAS  PubMed  Google Scholar 

  24. Datta P, Bhatla N, Dar L et al (2010) Prevalence of human papillomavirus infection among young women in North India. Cancer Epidemiol 34:157–161

    Article  PubMed  Google Scholar 

  25. Kumar A, Pant MC, Singh HS et al (2012) Reduced expression of DNA repair genes (XRCC1, XPD, and OGG1) in squamous cell carcinoma of head and neck in North India. Tumor Biol 33:111–119

    Article  CAS  Google Scholar 

  26. Pathak S, Sharma C, Jayaram HN, Singh N (2009) Apoptotic signaling induced by benzamide riboside: an in vitro study. Mol Cell Biochem 328:67–73

    Article  CAS  PubMed  Google Scholar 

  27. Wang SS, Bratti MC, Rodríguez AC et al (2009) Common variants in immune and DNA repair genes and risk for human papillomavirus persistence and progression to cervical cancer. J Infect Dis 199:20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng L, Sturgis EM, Eicher SA et al (2002) Expression of nucleotide excision repair genes and the risk for squamous cell carcinoma of the head and neck. Cancer 94:393–397

    Article  CAS  PubMed  Google Scholar 

  29. Liu R, Yin LH, Pu YP (2007) Reduced expression of human DNA repair genes in esophageal squamous-cell carcinoma in china. J Toxicol Environ Health A 70:956–963

    Article  CAS  PubMed  Google Scholar 

  30. Morimoto H, Tsukada J, Kominato JY et al (2005) Reduced expression of human mismatch repair genes in adult T-cell leukemia. Am J Hematol 78:100–107

    Article  CAS  PubMed  Google Scholar 

  31. Wei QY, Eicher SA, Guan YL et al (1998) Reduced expression of hMLH1 and TBPH/hMSH6: a risk factor for head and neck cancer. Cancer Epidemiol Biomarkers Prev 7:309–314

    CAS  PubMed  Google Scholar 

  32. Cherpillod P, Amstad PA (1995) Benzo[a]pyrene-induced mutagenesis and p53 hot-spot codons 248 and 249 in human hepatocytes. Mol Carcinog 13:15–20

    Article  CAS  PubMed  Google Scholar 

  33. Casse C, Hu YC, Ahrendt SA (2003) The XRCC1 codon 399 Gln allele is associated with adenine to guanine p53 mutations in non-small cell lung cancer. Mutat Res 528:19–27

    Article  CAS  PubMed  Google Scholar 

  34. Iftner T, Elbel M, Schopp B et al (2002) Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. EMBO J 21:4741–4748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kane MF, Loda M, Gaida GM et al (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808–811

    CAS  PubMed  Google Scholar 

  36. Qian X, von Wronski MA, Brent TP (1995) Localization of methylation sites in the human O6-methylguanine-DNA methyltransferase promoter: correlation with gene suppression. Carcinogenesis 16:1385–1390

    Article  CAS  PubMed  Google Scholar 

  37. Oesch F, Aulman W, Platt KL et al (1987) Individual differences in DNA repair capacities in man. Arch Toxicol Suppl 10:172–179

    Article  CAS  PubMed  Google Scholar 

  38. Wang P et al (2010) XRCC1 downregulated through promoter hypermethylation is involved in human gastric carcinogenesis. J Dig Dis 11:343–351

    Article  CAS  PubMed  Google Scholar 

  39. Chen HY et al (2010) Role of ERCC1 promoter hypermethylation in drug resistance to cisplatin in human gliomas. Int J Cancer 126:1944–1954

    CAS  PubMed  Google Scholar 

  40. Lunn RuthM (2000) XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis 21:551–555

    Article  CAS  PubMed  Google Scholar 

  41. Lunn RuthM (1999) XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin a variant frequency. Cancer Res 59:2557

    CAS  PubMed  Google Scholar 

  42. Wang S, Wu X, Chen Y et al (2012) Prognostic and predictive role of JWA and XRCC1 expressions in gastric cancer. Clin Cancer Res 18:2987–2996

    Article  CAS  PubMed  Google Scholar 

  43. Cheng XD, Lu WG, Ye F et al (2009) The association of XRCC1 gene single nucleotide polymorphisms with response to neoadjuvant chemotherapy in locally advanced cervical carcinoma. J Experim Clin Cancer Res 28:91

    Article  Google Scholar 

  44. Vodicka P, Stetina R, Polakova V et al (2007) Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis 28:657–664

    Article  CAS  PubMed  Google Scholar 

  45. Chang JS, Wrensch MR, Hansen HM et al (2009) Base excision repair genes and risk of lung cancer among San Francisco bay area latinos and African Americans. Carcinogenesis 78:78–87

    Google Scholar 

  46. Rodriguez M, Yu X, Chen J et al (2003) Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J Biol Chem 278:52914–52918

    Article  CAS  PubMed  Google Scholar 

  47. Qiao Y, Spitz MR, Guo Z et al (2002) Rapid assessment of repair of ultraviolet dna damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes. Mutat Res 509:165–174

    Article  CAS  PubMed  Google Scholar 

  48. Sliwinski T, Przybylowska K, Markiewicz L et al (2010) MUTYH Tyr165Cys, OGG1 Ser326Cys and XPD Lys751Gln polymorphisms and head neck cancer susceptibility: a case control study. Mol Biol Rep 38:1251–1261

    Article  PubMed  Google Scholar 

  49. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11:1513–1530

    CAS  PubMed  Google Scholar 

  50. Zhou W, Gurubhagavatula S, Liu G et al (2004) Excision repair cross-complementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res 10:939–4943

    Google Scholar 

  51. Olaussen KA, Dunant A, Fouret P, IALT Bio Investigators et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355:983–991

    Article  CAS  PubMed  Google Scholar 

  52. Welsh C, Day R, McGurk C et al (2004) Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. IntJ Cancer 110:352–361

    Article  CAS  Google Scholar 

  53. Ferry KV, Hamilton TC, Johnson SW (2000) Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochem Pharmacol 60:1305–1313

    Article  CAS  PubMed  Google Scholar 

  54. Konno R et al (2011) Prevalence and type distribution of human papillomavirus in healthy Japanese women aged 20 to 25 years enrolled in a clinical study. Cancer Sci 102:877–882

    Article  CAS  PubMed  Google Scholar 

  55. Suthipintawong C et al (2011) Human papilloma virus prevalence, genotype distribution, and pattern of infection in Thai women. Asian Pac J Cancer Prev 12:853–856

    PubMed  Google Scholar 

  56. Zamora P et al (2009) Genotype distribution of human papillomavirus (HPV) and co-infections in cervical cytologic specimens from two outpatient gynecological clinics in a region of southeast Spain. BMC Infect Dis 9:24

    Article  Google Scholar 

  57. Pathak S et al (2012) Cervical cancer pathogenesis is associated with one-carbon metabolism. Mol Cell Biochem 369:1–2

    Article  CAS  PubMed  Google Scholar 

  58. Villa LL (1997) Human papillomaviruses and cervical cancer. Adv Cancer Res 71:321–341

    Article  CAS  PubMed  Google Scholar 

  59. Chatterjee K et al (2010) CCR2-V64I polymorphism is associated with increased risk of cervical cancer but not with HPV infection or pre-cancerous lesions in African women. BMC Cancer 10:278

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Guresh Kumar (Department of Biostastics, AIIMS) for helping in statistical analysis. We are also grateful to the participants of the study. D. Bajpai is thankful to ICMR, New Delhi for providing Senior Research Fellowship.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeta Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajpai, D., Banerjee, A., Pathak, S. et al. Decreased expression of DNA repair genes (XRCC1, ERCC1, ERCC2, and ERCC4) in squamous intraepithelial lesion and invasive squamous cell carcinoma of the cervix. Mol Cell Biochem 377, 45–53 (2013). https://doi.org/10.1007/s11010-013-1569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1569-y

Keywords

Navigation