Skip to main content
Log in

Effect of cholesterol on lipogenesis and VLDL–TG assembly and secretion in goose primary hepatocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To investigate how cholesterol induces hepatocytic steatosis, we investigated the effect of cholesterol on hepatic lipogenesis and the assembly and secretion of very-low-density lipoprotein–triglycerides (VLDL–TGs) in goose primary hepatocytes. We found that cholesterol at 20 μg/ml increased the concentrations of extracellular VLDL, intracellular cholesterol, and intracellular TGs, while cholesterol at 30 μg/ml had a reduced effect (p < 0.05). Additionally, cholesterol at 20 μg/ml, but not at 10 or 30 μg/ml, increased the extracellular TG concentration. Cholesterol increased the fatty acid synthase (FAS) enzyme activity in a dose-dependent manner. Incubation with cholesterol increased the mRNA level of genes involved in lipogenesis, including sterol regulatory element-binding proteins (SREBPs), FAS, acetyl-CoA carboxylase-α (ACCα), and liver X receptors. The mRNA level of the acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene changed in response to cholesterol treatment in a dose-dependent manner. Similar to the regulation of extracellular VLDL and intracellular TG accumulation, the mRNA levels of the microsomal triglyceride transfer protein, forkhead box O1, and DGAT2 increased with treatment with 10 or 20 μg/ml of cholesterol, but decreased with treatment with 30 μg/ml of cholesterol (p < 0.05). Cholesterol had no evident effect on the mRNA level of the apolipoprotein B gene. Incubation with cholesterol at 20 and 30 μg/ml increased the nuclear SREBP-1 protein level (p < 0.05) and the binding affinity of the nuclear SREBP-1 to ACCα SRE probes. In conclusion, cholesterol not only activates the transcription of genes involved in fatty acid synthesis and TG accumulation, but also activates the transcription of genes involved in the assembly and secretion of VLDL–TG in goose primary hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M (2006) Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 Mice with Type 1 Diabetes. Diabetes 55:2502–2509

    Article  PubMed  CAS  Google Scholar 

  2. Brandebourg TD (2005) Regulation of differentiating pig preadipocytes by cholesterol. J Anim Sci 83:98–108

    PubMed  CAS  Google Scholar 

  3. Knight BL, Hebbachi A, Hauton D, Brown AM, Wiggins D, Patel DD, Gibbons GF (2005) A role for PPARalpha in the control of SREBP activity and lipid synthesis in the liver. Biochem J 389:413–421

    Article  PubMed  CAS  Google Scholar 

  4. Heimberg M, Weinstein I, Dishmon G, Fried M (1965) Lipoprotein lipid transport by livers from normal and CCl-4-poisoned animals. Am J Physiol 209:1053–1060

    PubMed  CAS  Google Scholar 

  5. Windmueller HG, Spaeth AE (1967) De novo synthesis of fatty acid in perfused rat liver as a determinant of plasma lipoprotein production. Arch Biochem Biophys 122:362–369

    Article  PubMed  CAS  Google Scholar 

  6. Khan BV, Fungwe TV, Wilcox HG, Heimberg M (1990) Cholesterol is required for the secretion of the very-low-density lipoprotein: in vivo studies. Biochim Biophys Acta 1044:297–304

    Article  PubMed  CAS  Google Scholar 

  7. Stone BC, Schreiber D, Alleman LD, Ho CY (1987) Hepatic metabolism and secretion of a cholesterol-enriched lipoprotein fraction. J Lipid Res 28:162–172

    PubMed  CAS  Google Scholar 

  8. Gordon DA, Jamil H, Sharp D, Mullaney D, Yao Z, Gregg RE, Wetterau J (1994) Secretion of apolipoprotein B-containing lipoproteins from HeLa cells is dependent on expression of the microsomal triglyceride transfer protein and is regulated by lipid availability. Proc Natl Acad Sci USA 91:7628–7632

    Article  PubMed  CAS  Google Scholar 

  9. Wetterau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, Schmitz J, Gay G, Rader DJ, Gregg RE (1992) Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 258:999–1001

    Article  PubMed  CAS  Google Scholar 

  10. Chen HC, Farese RV Jr (2000) DGAT and triglyceride synthesis: a new target for obesity treatment? Trends Cardiovasc Med 10:188–192

    Article  PubMed  CAS  Google Scholar 

  11. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr (2008) DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301

    Article  PubMed  CAS  Google Scholar 

  12. Kamagate A, Qu S, Perdomo G, Su D, Kim DH, Slusher S, Meseck M, Dong HH (2008) FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest 118:2347–2364

    PubMed  CAS  Google Scholar 

  13. Han C, Wang J, Xu H, Li L, Ye J, Jiang L, Zhuo W (2008) Effect of overfeeding on plasma parameters and mRNA expression of genes associated with hepatic lipogenesis in goose. Asian Aust J Anim Sci 21:590–595

    CAS  Google Scholar 

  14. Seglen P (1967) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  Google Scholar 

  15. Natali F, Siculella L, Salvati S, Gnoni GV (2007) Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J Lipid Res 48:1966–1975

    Article  PubMed  CAS  Google Scholar 

  16. Fossati P, Prencipe L (1982) Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. J Clin Chem 28:2077–2080

    CAS  Google Scholar 

  17. Gamble W, Vaughan M, Kruth HS, Avigan J (1998) Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res 19:1068–1070

    Google Scholar 

  18. Ingle DL, Bauman DE, Mellenberger RW, Johnson DE (1973) Lipogenesis in the ruminant: effect of fasting and refeeding on fatty acid synthesis and enzymatic activity of sheep adipose tissue. J Nutr 103:1479–1488

    PubMed  CAS  Google Scholar 

  19. Livak KJ, Sehmittgen TD (2001) Analysis of relative gene expression data using rea1-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  20. Bobard A, Hainault I, Ferre P, Foufelle F, Bossard P (2005) Differential regulation of sterol regulatory element-binding protein 1c transcriptional activity by insulin and liver X receptor during liver development. J Biol Chem 280:199–206

    PubMed  CAS  Google Scholar 

  21. Fungwe TV, Fox JE, Cagen LM, Wilcox HG, Heimberg M (1994) Stimulation of fatty acid biosynthesis by dietary cholesterol and of cholesterol synthesis by dietary fatty acid. J Lipid Res 35:311–318

    PubMed  CAS  Google Scholar 

  22. Zhao JC, Xiao LJ, Zhu H, Shu Y, Cheng NS (1998) Changes of lipid metabolism in plasma liver and bile during cholesterol gallstone formation in rabbit model. World J Gastroenterol 4:337–339

    PubMed  CAS  Google Scholar 

  23. Zhao HL, Cho KH, Ha YW, Jeong TS, Lee WS, Kim YS (2006) Cholesterol-lowering effect of platycodin D in hypercholesterolemic ICR mice. Eur J Pharmacol 537:166–173

    Article  PubMed  CAS  Google Scholar 

  24. Eder K (1999) The effect of a combined dietary treatment with cholesterol and cholic acid on the lipid metabolism of geese at low or high choline concentrations. Arch Tierernahr 52:25–297

    Article  Google Scholar 

  25. Kosykh VA, Preobrazhensky SN, Fuki IV, Zaikina OE, Tsibulsky VP, Repin VS, Smirnov VN (1985) Cholesterol can stimulate secretion of apolipoprotein B by cultured human hepatocytes. Biochim Biophys Acta 836:385–389

    Article  PubMed  CAS  Google Scholar 

  26. Carr TP, Hamilton RL Jr, Rudel LL (1995) ACAT inhibitors decrease secretion of cholesteryl esters and apolipoprotein B by perfused livers of African green monkeys. J Lipid Res 36:25–36

    PubMed  CAS  Google Scholar 

  27. Pang L, Wang JF, Dong P, Wang Y, Xue CH (2006) Comparison of the preventive effects of two species of holothurian on experimental hyperlipidemia rats. Acta Nutr Sin 5:446–447

    Google Scholar 

  28. Liu CH, Huang M, Huang PC (1995) Sources of triacylglycerol accumulation in livers of rats fed a cholesterol-supplemented diet. Lipids 30:527–531

    Article  PubMed  CAS  Google Scholar 

  29. Wetterau JR, Gregg RE, Harrity TW, Arbeeny C, Cap M, Connolly F, Chu CH, George RJ, Gordon DA, Jamil H, Jolibois KG, Kunselman LK, Lan SJ, Maccagnan TJ, Ricci B, Yan M, Young D, Chen Y, Fryszman OM, Logan JV, Musial CL, Poss MA, Robl JA, Simpkins LM, Biller SA, Slusarchyk WA, Sulsky R, Tauk P, Magnin DR, Tino JA, Lawrence M, Pickson JK, Biller SA (1998) An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 282:751–754

    Article  PubMed  CAS  Google Scholar 

  30. Bennett AJ, Bruce JS, Salter AM, White DA, Billett MA (1996) Hepatic microsomal triglyceride transfer protein messenger RNA concentrations are increased by dietary in hamsters. FEBS Lett 394:247–250

    Article  PubMed  CAS  Google Scholar 

  31. Liang JJ, Oelkers P, Guo C, Chu PC, Dixon JL, Ginsberg HN, Sturley SL (2004) Overexpression of human diacylglycerol acyltransferase 1, acyl-CoA: cholesterol acyltransferase 1, or acyl-CoA:cholesterol acyl transferase 2 stimulates secretion of apolipoprotein B-containing lipoproteins in McA-RH7777 cells. J Biol Chem 279:44938–44944

    Article  PubMed  CAS  Google Scholar 

  32. Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM, Farese RV Jr (2003) Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem 279:11767–11776

    Article  PubMed  Google Scholar 

  33. Yamazaki T, Sasaki E, Kakinuma C, Yano T, Miura S, Ezaki O (2005) Increased very low density lipoprotein secretion and gonadal fat mass in mice overexpressing liver DGAT1. J Biol Chem 280:21506–21514

    Article  PubMed  CAS  Google Scholar 

  34. Millar J, Stone S, Tietge U, Tow B, Billheimer J, Wong J, Hamilton R, Farese RV Jr, Rader D (2006) Short-term overexpression of DGAT1 or DGAT2 increases hepatic triglyceride but not VLDL triglyceride or apoB production. J Lipid Res 47:2297–2305

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Chinese Agriculture Research Service (No. CARS-43-6), the National Natural Science Funds of China (No. 31101712), and the Research Fund for the Doctoral Program of Higher Education of China (No. 20115103120006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, C.C., Wang, J.W., Pan, Z.X. et al. Effect of cholesterol on lipogenesis and VLDL–TG assembly and secretion in goose primary hepatocytes. Mol Cell Biochem 374, 163–172 (2013). https://doi.org/10.1007/s11010-012-1516-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1516-3

Keywords

Navigation