Skip to main content
Log in

Post-transcriptional regulation of VEGF-A mRNA levels by mitogen-activated protein kinases (MAPKs) during metabolic stress associated with ischaemia/reperfusion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Angiogenesis is a well-characterised response to the metabolic stresses that occur during ischaemia/reperfusion, but the signalling pathways that regulate it are poorly understood. We tested whether activation of mitogen-activated protein kinases (MAPKs) was involved in regulating the expression of pro-angiogenic growth factors by the metabolic stresses associated with ischaemia/reperfusion in H9c2 rat cardiomyoblasts. Metabolic stress had no effect on vascular endothelial growth factor (VEGF) mRNA levels, but recovery after metabolic inhibition led to a strong induction of VEGF-A mRNA (3.8 ± 0.5-fold at 4 h), a modest rise in VEGF-C mRNA levels (1.7 ± 0.3-fold at 4 h), with no effect on VEGF-B or -D. A VEGF-A promoter reporter construct was unresponsive to metabolic inhibition/recovery and increases in VEGF-A mRNA were not blocked by the transcription inhibitor actinomycin D suggesting that increases in VEGF mRNA were due to enhanced VEGF-A mRNA stability. In addition, studies using reporter constructs demonstrated that regions within the 5′ untranslated region (UTR) contributed to enhanced mRNA stability following recovery from metabolic stress. Increases in VEGF-A mRNA were abolished by inhibition of extracellular signal-regulated kinase or c-jun N-terminal kinase MAPKs, suggesting that these kinases may promote angiogenesis in response to metabolic stress during ischaemia/reperfusion by increasing VEGF-A message stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATF2:

Activating transcription factor 2

ATP:

Adenosine 5′ triphosphate

CAT:

Chloramphenicol acetyl transferase

dCTP:

Deoxy cytosine 5′ triphosphate

ERK:

Extracellular signal-regulated kinase

JNK:

c-jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MKK6:

MAPK kinase 6

PMA:

Phorbol myristoyl acetate

RT-PCR:

Reverse transcription polymerase chain reaction

SEM:

Standard error of the mean

VEGF:

Vascular endothelial growth factor

References

  1. Operschall C, Falivene L, Clozel JP, Roux S (2000) A new model of chronic cardiac ischemia in rabbits. J Appl Physiol 88(4):1438–1445

    PubMed  CAS  Google Scholar 

  2. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359(6398):845–848

    Article  PubMed  CAS  Google Scholar 

  3. Shammas NW, Moss AJ, Sullebarger JT, Gutierrez OH, Rocco TA (1993) Acquired coronary angiogenesis after myocardial infarction. Cardiology 83(3):212–216

    Article  PubMed  CAS  Google Scholar 

  4. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  PubMed  CAS  Google Scholar 

  5. Matsumoto T, Claesson-Welsh L (2001) VEGF receptor signal transduction. Sci STKE 2001(112):RE21

    Article  PubMed  CAS  Google Scholar 

  6. Shibuya M, Ito N, Claesson-Welsh L (1999) Structure and function of vascular endothelial growth factor receptor-1 and -2. Curr Top Microbiol Immunol 237:59–83

    Article  PubMed  CAS  Google Scholar 

  7. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988–26995

    PubMed  CAS  Google Scholar 

  8. Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E (1994) Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc Res 28(8):1176–1179

    Article  PubMed  CAS  Google Scholar 

  9. Hashimoto E, Ogita T, Nakaoka T, Matsuoka R, Takao A, Kira Y (1994) Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heart. Am J Physiol 267(5 Pt 2):H1948–H1954

    PubMed  CAS  Google Scholar 

  10. Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342(9):626–633

    Article  PubMed  CAS  Google Scholar 

  11. Becker PM, Alcasabas A, Yu AY, Semenza GL, Bunton TE (2000) Oxygen-independent upregulation of vascular endothelial growth factor and vascular barrier dysfunction during ventilated pulmonary ischemia in isolated ferret lungs. Am J Respir Cell Mol Biol 22(3):272–279

    PubMed  CAS  Google Scholar 

  12. Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W (2000) Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156(3):965–976

    Article  PubMed  CAS  Google Scholar 

  13. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583

    Article  PubMed  CAS  Google Scholar 

  14. Levy AP, Levy NS, Loscalzo J, Calderone A, Takahashi N, Yeo KT, Koren G, Colucci WS, Goldberg MA (1995) Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res 76(5):758–766

    Article  PubMed  CAS  Google Scholar 

  15. Levy AP, Levy NS, Wegner S, Goldberg MA (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270(22):13333–13340

    Article  PubMed  CAS  Google Scholar 

  16. Levy AP, Levy NS, Goldberg MA (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271(5):2746–2753

    Article  PubMed  CAS  Google Scholar 

  17. Enholm B, Paavonen K, Ristimaki A, Kumar V, Gunji Y, Klefstrom J, Kivinen L, Laiho M, Olofsson B, Joukov V, Eriksson U, Alitalo K (1997) Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14(20):2475–2483

    Article  PubMed  CAS  Google Scholar 

  18. Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, Mould A, Cahill MM, Tonks ID, Grimmond SM, Townson S, Wells C, Little M, Cummings MC, Hayward NK, Kay GF (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86(2):E29–E35

    Article  PubMed  CAS  Google Scholar 

  19. Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N, Kearney M, Hu JS, Isner JM (1998) Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 153(2):381–394

    Article  PubMed  CAS  Google Scholar 

  20. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70(2):240–253

    Article  PubMed  CAS  Google Scholar 

  21. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869

    PubMed  CAS  Google Scholar 

  22. Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116(12):1413–1423

    Article  PubMed  CAS  Google Scholar 

  23. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH (1996) Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79(2):162–173

    Article  PubMed  CAS  Google Scholar 

  24. Punn A, Mockridge JW, Farooqui S, Marber MS, Heads RJ (2000) Sustained activation of p42/p44 mitogen-activated protein kinase during recovery from simulated ischaemia mediates adaptive cytoprotection in cardiomyocytes. Biochem J 350(Pt 3):891–899

    Article  PubMed  CAS  Google Scholar 

  25. Knight RJ, Buxton DB (1996) Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart. Biochem Biophys Res Commun 218(1):83–88

    Article  PubMed  CAS  Google Scholar 

  26. Milanini J, Vinals F, Pouyssegur J, Pages G (1998) p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem 273(29):18165–18172

    Article  PubMed  CAS  Google Scholar 

  27. Pages G, Berra E, Milanini J, Levy AP, Pouyssegur J (2000) Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J Biol Chem 275(34):26484–26491

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez-Gabriel MA, Russell P (2008) Control of mRNA stability by SAPKs. Top Curr Genet 20:159–170. doi:10.1007/4735_2007_0248

    Article  PubMed  CAS  Google Scholar 

  29. Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G (1991) Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69(6):1476–1486

    Article  PubMed  CAS  Google Scholar 

  30. Nagarkatti DS, Sha’afi RI (1998) Role of p38 MAP kinase in myocardial stress. J Mol Cell Cardiol 30(8):1651–1664

    Article  PubMed  CAS  Google Scholar 

  31. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271(2):736–741

    Article  PubMed  CAS  Google Scholar 

  32. Harding SJ, Browne GJ, Miller BW, Prigent SA, Dickens M (2010) Activation of ASK1, downstream MAPKK and MAPK isoforms during cardiac ischaemia. Biochim Biophys Acta 1802(9):733–740

    PubMed  CAS  Google Scholar 

  33. Esumi K, Nishida M, Shaw D, Smith TW, Marsh JD (1991) NADH measurements in adult rat myocytes during simulated ischemia. Am J Physiol 260(6 Pt 2):H1743–H1752

    PubMed  CAS  Google Scholar 

  34. Coles LS, Bartley MA, Bert A, Hunter J, Polyak S, Diamond P, Vadas MA, Goodall GJ (2004) A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the vascular endothelial growth factor mRNA. Potential role in mRNA stabilization. Eur J Biochem 271(3):648–660

    Article  PubMed  CAS  Google Scholar 

  35. Du M, Roy KM, Zhong L, Shen Z, Meyers HE, Nichols RC (2006) VEGF gene expression is regulated post-transcriptionally in macrophages. FEBS J 273(4):732–745. doi:10.1111/j.1742-4658.2006.05106.x

    Article  PubMed  CAS  Google Scholar 

  36. Iida K, Kawakami Y, Sone H, Suzuki H, Yatoh S, Isobe K, Takekoshi K, Yamada N (2002) Vascular endothelial growth factor gene expression in a retinal pigmented cell is up-regulated by glucose deprivation through 3′ UTR. Life Sci 71(14):1607–1614

    Article  PubMed  CAS  Google Scholar 

  37. Onesto C, Berra E, Grepin R, Pages G (2004) Poly(A)-binding protein-interacting protein 2, a strong regulator of vascular endothelial growth factor mRNA. J Biol Chem 279(33):34217–34226. doi:10.1074/jbc.M400219200

    Article  PubMed  CAS  Google Scholar 

  38. Goldberg-Cohen I, Furneauxb H, Levy AP (2002) A 40-bp RNA element that mediates stabilization of vascular endothelial growth factor mRNA by HuR. J Biol Chem 277(16):13635–13640

    Article  PubMed  CAS  Google Scholar 

  39. Shih SC, Claffey KP (1999) Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J Biol Chem 274(3):1359–1365

    Article  PubMed  CAS  Google Scholar 

  40. Dibbens JA, Miller DL, Damert A, Risau W, Vadas MA, Goodall GJ (1999) Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell 10(4):907–919

    PubMed  CAS  Google Scholar 

  41. Chen CY, Gherzi R, Andersen JS, Gaietta G, Jurchott K, Royer HD, Mann M, Karin M (2000) Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev 14(10):1236–1248

    PubMed  CAS  Google Scholar 

  42. Essafi-Benkhadir K, Pouyssegur J, Pages G (2010) Implication of the ERK pathway on the post-transcriptional regulation of VEGF mRNA stability. Methods Mol Biol 661:451–469. doi:10.1007/978-1-60761-795-2_28

    Article  PubMed  CAS  Google Scholar 

  43. Yang Z, Zhang X, Darrah PA, Mosser DM (2010) The regulation of Th1 responses by the p38 MAPK. J Immunol 185(10):6205–6213. doi:10.4049/jimmunol.1000243

    Article  PubMed  CAS  Google Scholar 

  44. Bhattacharyya S, Gutti U, Mercado J, Moore C, Pollard HB, Biswas R (2011) MAPK signaling pathways regulate IL-8 mRNA stability and IL-8 protein expression in cystic fibrosis lung epithelial cell lines. Am J Physiol Lung Cell Mol Physiol 300(1):L81–L87. doi:10.1152/ajplung.00051.2010

    Article  PubMed  CAS  Google Scholar 

  45. Lin WN, Lin CC, Cheng HY, Yang CM (2011) Regulation of cyclooxygenase-2 and cytosolic phospholipase A(2) gene expression by lipopolysaccharide through the RNA-binding protein HuR: involvement of NADPH oxidase, reactive oxygen species and mitogen-activated protein kinases. Br J Pharmacol 163(8):1691–1706. doi:10.1111/j.1476-5381.2011.01312.x

    Article  PubMed  CAS  Google Scholar 

  46. Schagger H, von Jagow G (1987) Tricine–sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a grant from the British Heart Foundation (PG#98111) and studentships from the Biotechnology and Biological Sciences Research Council (#08170) and Medical Research Council (#G78/6321). We would like to thank Dr. Ben Zion-Levy for providing us with the pV3.4-CAT construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dickens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, B.W., Hay, J.M., Prigent, S.A. et al. Post-transcriptional regulation of VEGF-A mRNA levels by mitogen-activated protein kinases (MAPKs) during metabolic stress associated with ischaemia/reperfusion. Mol Cell Biochem 367, 31–42 (2012). https://doi.org/10.1007/s11010-012-1316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1316-9

Keywords

Navigation