Skip to main content
Log in

Characterization of the cytokine expression profiles of the aorta and liver of young tumor necrosis factor alpha mutant mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Both the aorta and the liver are major organs that play important roles in lipid metabolism, and they are subject to systemic as well as local inflammatory responses in metabolic syndrome. Our previous study indicated that TNFα deficiency influences atherogenesis by reducing inflammation of the aorta. To better understand this phenomenon, the mRNA and protein expression profiles of a panel of cytokines in the aorta and liver of young TNFα-null (TNFα−/−) mice were analyzed and compared with age- and gender-matched wild-type (WT) control mice. In the aorta, IL-2 and GM-CSF were up-regulated versus WT mice, while IL-1β, IL-4, IL-6, IL-10, MCP-1, IFN-γ, and the adhesion molecules ICAM-1 and VCAM-1 were down-regulated. In the liver, however, the expressions of NF-κB, IL-1, IL-2, IL-6, IL-10, ICAM-1, and VCAM-1 were significantly up-regulated in TNFα−/− mice, while IFN-γ and IL-4 were down-regulated. Out of the 62 cytokines analyzed, 22 in the aorta and 27 in the liver were altered by 2–fivefolds at the protein level in TNFα−/− mice. Our data demonstrated that the loss of TNFα function led to various changes in the levels of cytokine expression in these organs at both the transcriptional and translational levels. These results indicated that the changes in cytokine expression patterns in the aorta and the liver may further influence the progression of systemic or local lipid metabolism dysregulation and pathogenesis in animals with TNFα dysfunction representing inflammation-related diseases, such as atherosclerosis and metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IL:

Interleukin

GM-CSF:

Colony stimulating factor

MCP-1:

Monocyte chemoattractant protein-1

IFN-γ:

Interferon-gamma

ICAM-1:

Intercellular adhesion molecule-1

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508

    Article  PubMed  CAS  Google Scholar 

  2. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581

    Article  PubMed  CAS  Google Scholar 

  3. Popa C, Netea MG, van Riel PL et al (2007) The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 48:751–762

    Article  PubMed  CAS  Google Scholar 

  4. Ohta H, Wada H, Niwa T et al (2005) Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 180:11–17

    Article  PubMed  CAS  Google Scholar 

  5. Marino MW, Dunn A, Grail D et al (1997) Characterization of tumor necrosis factor-deficient mice. Proc Natl Acad Sci USA 94:8093–8098

    Article  PubMed  CAS  Google Scholar 

  6. Pasparakis M, Alexopoulou L, Episkopou V et al (1996) Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 184:1397–1411

    Article  PubMed  CAS  Google Scholar 

  7. Xiao N, Yin M, Zhang L et al (2009) Tumor necrosis factor-alpha deficiency retards early fatty-streak lesion by influencing the expression of inflammatory factors in apoE-null mice. Mol Genet Metab 96:239–244

    Article  PubMed  CAS  Google Scholar 

  8. Bullo′ M, Garcı′a-Lorda P, Megias I et al (2003) Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res 11:525–531

    Article  Google Scholar 

  9. Diamant M, Lamb HJ, van de Ree MA et al (2005) The association between abdominal visceral fat and carotid stiffness is mediated by circulating inflammatory markers in uncomplicated type 2 diabetes. J Clin Endocrinol Metab 90(3):1495–1501

    Article  PubMed  CAS  Google Scholar 

  10. Bruun JM, Lihn AS, Verdich C et al (2003) Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab 285:E527–E533

    PubMed  CAS  Google Scholar 

  11. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumour necrosis factor-alpha: direct role in obesity induced inflammation. Science 259:87–91

    Article  PubMed  CAS  Google Scholar 

  12. Sonnenberg GE, Krakower GR et al (2004) A novel pathway to the manifestations of metabolic syndrome. Obes Res 12(2):180–186

    Article  PubMed  CAS  Google Scholar 

  13. Xydakis AM, Case CC, Jones PH (2004) Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight loss through caloric restriction. J Clin Endocrinol Metab 89:2697–2703

    Article  PubMed  CAS  Google Scholar 

  14. Porter MH, Cutchins A, Fine JB et al (2002) Effects of TNFa on glucose metabolism and lipolysis in adipose tissue and isolated fat-cell preparations. J Lab Clin Med 139:140–146

    Article  PubMed  CAS  Google Scholar 

  15. Rask-Madsen C, Dominguez H, Ihlemann N et al (2003) Tumour necrosis factor-alpha inhibits insulin’s stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans. Circulation 108(15):1815–1821

    Article  PubMed  CAS  Google Scholar 

  16. Bernstein LE, Berry J, Kim S (2006) Effects of etanercept in patients with the metabolic syndrome. Arch Intern Med 166:902–908

    Article  PubMed  CAS  Google Scholar 

  17. Lo J, L Bernstein E, Canavan B et al (2007) Effects of TNF-a neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. Am J Physiol Endocrinol Metab 293: E102–E109

    Google Scholar 

  18. Canault M, Peiretti F, Mueller C et al (2004) Exclusive expression of transmembrane TNF-alpha in mice reduces the inflammatory response in early lipid lesions of aortic sinus. Atherosclerosis 172:211–218

    Article  PubMed  CAS  Google Scholar 

  19. Branen L, Hovgaard L, Nitulescu M et al (2004) Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 24:2137–2142

    Article  PubMed  CAS  Google Scholar 

  20. Ali K, Middleton M, Pure E et al (2005) Apolipoprotein E suppresses the type I inflammatory response in vivo. Circ Res 97:922–927

    Article  PubMed  CAS  Google Scholar 

  21. Fan J, Heller NM, Gorospe M et al (2005) The role of post-transcriptional regulation in chemokine gene expression in inflammation and allergy. Eur Respir J 26:933–947

    Article  PubMed  CAS  Google Scholar 

  22. Montecucco F, Steffens S, Burger F et al (2008) Tumor necrosis factor-alpha (TNF-alpha) induces integrin CD11b/CD18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1 alpha) on human neutrophils through defined signaling pathways. Cell Signal 20:557–568

    Article  PubMed  CAS  Google Scholar 

  23. Elizur A, Adair-Kirk TL, Kelley DG et al (2008) Tumor necrosis factor-alpha from macrophages enhances LPS-induced clara cell expression of keratinocyte-derived chemokine. Am J Respir Cell Mol Biol 38:8–15

    Article  PubMed  CAS  Google Scholar 

  24. Lin SK, Kok SH, Shun CT et al (2007) Tumor necrosis factor-alpha stimulates the expression of C–C chemokine ligand 2 gene in fibroblasts from the human nasal polyp through the pathways of mitogen-activated protein kinase. Am J Rhinol 21:251–255

    Article  PubMed  Google Scholar 

  25. McCormack G, Moriarty D, O’Donoghue DP et al (2001) Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm Res 50:491–495

    Article  PubMed  CAS  Google Scholar 

  26. Kulbe H, Hagemann T, Szlosarek PW et al (2005) The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res 65:10355–10362

    Article  PubMed  CAS  Google Scholar 

  27. Odaka M, Matsukura S, Kuga H et al (2007) Differential regulation of chemokine expression by Th1 and Th2 cytokines and mechanisms of eotaxin/CCL-11 expression in human airway smooth muscle cells. Int Arch Allergy Immunol 143:84–88

    Article  PubMed  CAS  Google Scholar 

  28. Khovidhunkit W, Kim MS, Memon RA et al (2004) Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 45:1169–1196

    Article  PubMed  CAS  Google Scholar 

  29. Fan CY, Pan J, Usuda N et al (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273:15639–15645

    Article  PubMed  CAS  Google Scholar 

  30. Knolle PA, Gerken G (2000) Local control of the immune response in the liver. Immunol Rev 174:21–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Natural Science Foundation of Shandong (Z2007C05), Science and Technology Projects of Shandong (2008GG10002030) and the Department of Education of Shandong (J06L11) to J. Pan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Yin, M., Zhang, L. et al. Characterization of the cytokine expression profiles of the aorta and liver of young tumor necrosis factor alpha mutant mice. Mol Cell Biochem 366, 59–67 (2012). https://doi.org/10.1007/s11010-012-1283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1283-1

Keywords

Navigation