Skip to main content
Log in

Morin augments anticarcinogenic and antiproliferative efficacy against 7,12-dimethylbenz(a)-anthracene induced experimental mammary carcinogenesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In general, oxidative stress resulting from an imbalance between prooxidant and antioxidant systems plays an important role in the pathogenesis of cancer. Morin (3,5,7,2′,4′-pentahydroxyflavone), a member of the flavanol group, has been shown to possess chemopreventive potential against hepatocellular and colon cancer in experimental animals. Given the demonstrated importance of morin, aim of the present study was to evaluate the effect of morin on antiproliferative and anticarcinogenic effect against DMBA-induced experimental mammary carcinogenesis. Oral administration of 7,12-dimethylbenz(a)-anthracene (25 mg/kg body weight) to rats resulted in significant reduction of body weight, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and vitamin E). The levels of lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides) and tumor markers such as CA 15-3, AFP and CEA in serum were increased significantly in cancer-induced animals as compared to control rats. Oral supplementation of morin at a dose of 50 mg/kg body weight significantly improved the body weight, enzymic, and nonenzymic antioxidants and considerably decreased the lipid peroxidation marker and tumor markers levels. Histological observations also correlated with the biochemical parameters. Tumor bearing animals showed marked increase in proliferating cell nuclear antigen-positive cells and also the number of AgNOR/nuclei compared with control rats while this expression levels were significantly reduced upon morin treatment. Thus, this study reveals the possible beneficial effect of morin as chemopreventive agent against the oxidative stress induced during mammary carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DMBA:

7,12-Dimethylbenz(a)-anthracene

TEBs:

Terminal end buds

AFP:

Alpha-feto protein

CEA:

Carcinoembryonic antigen

CA 15-3:

Cancer antigen 15-3

AgNOR:

Argyrophilic nucleolar proteins

PCNA:

Proliferating cell nuclear antigen

References

  1. Smymiotis V, Theodosopoulos T, Marinis A, Goula K, Psychogios J, Kondi-Pafiti A (2005) Metastatic disease in the breast from nonmammary neoplasms. Eur J Gynaecol Oncol 26:547–550

    PubMed  CAS  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P (2001) Estimating the world cancer burden: Globocan 2000. Int J Cancer 94:153–156

    Article  PubMed  CAS  Google Scholar 

  3. Bryle P, Leon ME, Maisonneuve P, Autier P (2003) Cancer control in women. Update 2003. Int J Gynaecol Obstet 83:179–202

    Google Scholar 

  4. ICMR. National Cancer Registry Programme, 1981–2001, An Overview. Indian Council of Medical Research, New Delhi. April 2002

  5. Russo IH, Russo J (1978) Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz(a)anthracene. J Natl Cancer Inst 61:1439–1449

    PubMed  CAS  Google Scholar 

  6. Russo J, Lee KT, Ciocca DR, Russo IH (1983) Molecular and cellular basis of the mammary gland susceptibility to carcinogenesis. Environ Health Perspect 49:185–199

    Article  PubMed  CAS  Google Scholar 

  7. Rakesh S, Kline RP, Wu EX, Katz JK (2005) Rapid in vivo Taxotere quantitative chemosensitivity response by 4.23 Tesla sodium MRI and histo-immunostaining features in N-Methyl-N-Nitrosourea induced breast tumors in rats. Cancer Cell Int 5:26–45

    Article  Google Scholar 

  8. Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    Article  PubMed  CAS  Google Scholar 

  9. Subhashinee SK, Wijeratne M, Abou-Zaid M, Shahidi F (2006) Antioxidant polyphenols in almond and its coproducts. J Agric Food Chem 54:312–318

    Article  Google Scholar 

  10. Romero I, Páez A, Ferruelo A, Luján M, Berenguer A (2002) Polyphenols in red wine inhibit the proliferation and induce apoptosis of LNCaP cells. BJU Int 89:950–954

    Article  PubMed  CAS  Google Scholar 

  11. Wu TW, Zeng LH, Wu J, Fung KP (1993) Morin hydrate is a plant derived antioxidant-based hepatoprotector. Life Sci 53:213–218

    Google Scholar 

  12. Fang SH, Hou YC, Chang WC, Hsiu SL, Chao PD, Chiang BL et al (2003) Morin sulfates/glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shock. Life Sci 74:743–756

    Article  PubMed  CAS  Google Scholar 

  13. Kawabata K, Tanaka T, Honjo S, Kakumoto M, Hara A, Makita H, Tatematsu N, Ushida J, Tsuda H, Mori H (1999) Chemopreventive effect of dietary flavonoid morin on chemically induced rat tongue carcinogenesis. Int J Cancer 83:381–386

    Article  PubMed  CAS  Google Scholar 

  14. Kuo HM, Chang LS, Lin YL, Lu HF, Yang JS, Lee JH, Chung (2007) Morin inhibits the growth of human leukemia HL-60 cells via cell cycle arrest and induction of apoptosis through mitochondria dependent pathway. Anticancer Res 27:395–406

    PubMed  CAS  Google Scholar 

  15. Iwase Y, Takemura Y, Juichi M, Muainaka T, Ichiishi E, Ito C (2001) Inhibitory effect of flavonoid derivatives on Epstein-Barr virus activation and two stage carcinogensis of skin tumours. Cancer Lett 173:105–109

    Article  PubMed  CAS  Google Scholar 

  16. Wu TW, Zeng LH, Wu J, Fung KP (1994) Morin: a wood pigment that protects three types of human cells in the cardiovascular system against oxyradical damage. Biochem Pharmacol 47:1099–1103

    Article  PubMed  CAS  Google Scholar 

  17. Kok LD, Wong YP, Wu TW, Chan HC, Kwok TT, Fung KP (2000) Morin hydrate: a potential antioxidant in minimizing the free-radicals-mediated damage to cardiovascular cells by anti-tumor drugs. Life Sci 67:91–99

    Article  PubMed  CAS  Google Scholar 

  18. Zhanga R, Kanga KA, Piaoa MJ, Maenga YH, Leea KH, Changa WY, Youb HJ, Kimc JS, Kangc SS, Hyun JW (2009) Cellular protection of morin against the oxidative stress induced by hydrogen peroxide. Chem Biol Interact 177:21–27

    Article  Google Scholar 

  19. Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446

    Article  PubMed  CAS  Google Scholar 

  20. Ibarretxe G, Sánchez-Gómez MV, Campos-Esparza MR, Alberdi E, Matute C (2006) Differential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols. Glia 53:201–211

    Article  PubMed  Google Scholar 

  21. Damianaki A, Bakogeorgou E, Kampa M, Notas G, Hatzoglou A, Panagiotou S, Gemetzi C, Kouroumalis E, Martin PM, Castanas E (2000) Potent inhibitory action of red wine polyphenols on human breast cancer cells. J Cell Biochem 78:429–441

    Article  PubMed  CAS  Google Scholar 

  22. Nesaretnam K, Hales E, Sohail M, Krausz T, Darbre P (1998) 3,3′,4,4′-Tetrachlorobiphenyl (TCB) can enhance DMBA-induced mammary carcinogenesis in the rat. Eur J Cancer 34:389–393

    Article  PubMed  CAS  Google Scholar 

  23. Harris RE, Alshafie GA, Abou-Issa H, Seibert K (2000) Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res 60:2101–2103

    PubMed  CAS  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  25. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  26. Jiang ZY, Hunt JY, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202:384–389

    Article  PubMed  CAS  Google Scholar 

  27. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  PubMed  CAS  Google Scholar 

  28. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  PubMed  CAS  Google Scholar 

  29. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  30. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  PubMed  CAS  Google Scholar 

  31. Staal GEJ, Visser J, Veeger C (1969) Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta 185:39–48

    PubMed  CAS  Google Scholar 

  32. Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol 62:3–11

    Article  PubMed  CAS  Google Scholar 

  33. Desai ID (1984) Vitamin E analysis methods for animal tissues. Methods Enzymol 105:138–147

    Article  PubMed  CAS  Google Scholar 

  34. Aubele M, Bieterferd S, Derenzini M, Hufnagl P, Martin H, O¨ fner D, Ploton D, Ru¨schoff J (1994) Guidelines of AgNOR quantitation. Zentralbl Pathol 140:107–108

    PubMed  CAS  Google Scholar 

  35. Macnab GM, Urbanowicz JM, Kew MC (1978) Carcinoembryonic antigen in hepatocellular cancer. Br J Cancer 38:51–54

    Article  PubMed  CAS  Google Scholar 

  36. Abdi S, Ali A (1999) Role of oxygen free radicals in the pathogenesis and etiology of cancer. Cancer Lett 142:1–9

    Article  PubMed  CAS  Google Scholar 

  37. Janssen AM, Bosman CB, Van Duijn W, Oostendorp-van de Ruit MM, Kubben FJ, Griffioen G, Lamers CB, Van Krieken JH, van de Velde CJ, Verspaget HW (2000) Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin Cancer Res 6:3183–3192

    PubMed  CAS  Google Scholar 

  38. Talas ZS, Ozdemir I, Yilmaz I, Gok Y (2009) Antioxidative effects of novel synthetic organoselenium compound in rat lung and kidney. Ecotoxicol Environ Saf 72:916–921

    Article  PubMed  CAS  Google Scholar 

  39. Mccord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244:6056–6063

    PubMed  CAS  Google Scholar 

  40. Thirunavukkarasu C, Sakthisekaran D (2001) Effect of selenium on N-nitrosodiethylamine-induced multistage hepatocarcinogenesis with reference to lipid peroxidation and enzymic antioxidants. Cell Biochem Funct 19:27–35

    Article  PubMed  CAS  Google Scholar 

  41. Meister, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  42. Anoopkumar-Dukie S, Walker RB, Daya S (2001) A sensitive and reliable method for the detection of lipid peroxidation in biological tissues. J Pharm Pharmacol 53:263–266

    Article  PubMed  CAS  Google Scholar 

  43. Rao AV, Shaha C (2000) Role of glutathione S-transferases in oxidative stress-induced male germ cell apoptosis. Free Radic Biol Med 29:1015–1027

    Article  PubMed  CAS  Google Scholar 

  44. Masella R, Benedetto RD, Varı R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586

    Article  PubMed  CAS  Google Scholar 

  45. Swenberg JA, Hoel DG, Magee PN (1991) Mechanistic and statistical insight into the large carcinogenesis bioassays on jY-nitrosodiethylamine and jY-nitrosodimethylamine. Cancer Res 51:6409–6414

    PubMed  CAS  Google Scholar 

  46. Ketterer B, Meyer DJ (1989) Glutathione transferases: a possible role in the detoxication and repair of DNA and lipid hydroperoxides. Mutat Res 214:33–40

    Article  PubMed  CAS  Google Scholar 

  47. van Poppel G, van den Berg H (1997) Vitamins and cancer. Cancer Lett 114:195–202

    Article  PubMed  Google Scholar 

  48. Stocker R, Bowry VW, Frei B (1991) Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci USA 88:1646–1650

    Article  PubMed  CAS  Google Scholar 

  49. Gall JG, Pardue ML (1969) Formation and detection of RNA–DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–383

    Article  PubMed  CAS  Google Scholar 

  50. Derenzini M, Ploton D (1991) Interphase nucleolar organizer regions in cancer cells. Int Rev Exp Pathol 32:150–192

    Google Scholar 

  51. Derenzini M, Pession A, Trerè D (1990) Quantity of nucleolar silver-stained proteins is related to proliferative activity in cancer cells. Lab Invest 63:137–140

    PubMed  CAS  Google Scholar 

  52. Sirri V, Roussel P, Trerè D, Derenzini M, Hernandez-Verdun D (1995) Amount variability of total and individual Ag-NOR proteins in cells stimulated to proliferate. J Histochem Cytochem 43:887–893

    Article  PubMed  CAS  Google Scholar 

  53. Bravo R, Frank R, Blundell PA, Macdonald-Bravo H (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase-δ. Nature 326:515–517

    Article  PubMed  CAS  Google Scholar 

  54. Leonardi E, Girlando S, Serio G, Mauri FA, Perrone G, Scampini S, Dalla Palma P, Barbareschi M (1992) PCNA and Ki67 expression in breast carcinoma: correlations with clinical and biological variables. J Clin Pathol 45:416–419

    Article  PubMed  CAS  Google Scholar 

  55. Cheung KL, Graves CRL, Robertson JFR (2000) Tumor marker measurements in the diagnosis and monitoring of breast cancer. Cancer Treat Rev 26:91–102

    Article  PubMed  CAS  Google Scholar 

  56. Sikorska H, Shuster J, Gold P (1988) Clinical applications of carcinoembryonic antigen. Cancer Detect Prevent 12:321–355

    PubMed  CAS  Google Scholar 

  57. Go VLW, Zamcheck N (1982) The role of tumor markers in the management of colorectal cancer. Cancer 50:2618–2623

    PubMed  CAS  Google Scholar 

  58. Haagensen DE, Kister SJ, Vandevoorde JP, Gates JB, Smart EK, Hansen HJ, Wells SA (1978) Evaluation of carcinoembryonic antigen as a plasma monitor for human breast carcinoma. Cancer 42:1512–1519

    Article  PubMed  Google Scholar 

  59. Sell S, Becker F, Leffert HL, Osborn K, Salman J, Lombardi B, Shinozuka H, Reddy J, Roushlahti E, Sala-Trepat J (1983) α-Fetoprotein as a marker for early events and carcinoma development during chemical hepatocarcinogenesis. Environ Sci Res 29:271–293

    CAS  Google Scholar 

  60. Duffy MJ (2001) Biochemical markers in breast cancer: which ones are clinically useful? Clin Biochem 34:347–352

    Article  PubMed  CAS  Google Scholar 

  61. Kallioniemi OP, Oksa H, Aaran RK et al (1988) Serum CA 15-3 assay in the diagnosis and follow-up of breast cancer. Br J Cancer 58:213–215

    Article  PubMed  CAS  Google Scholar 

  62. Bast RC Jr, Ravdin P, Hayes DF, Bates S, Fritsche H Jr, Jessup JM, Kemeny N, Locker GY, Mennel RG, Somerfield MR (2001) American Society of Clinical Oncology Tumor Markers Expert Panel 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 19:1865–1878

    PubMed  Google Scholar 

Download references

Acknowledgments

The author, Ramadass Nandhakumar, is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, Government of India for providing grants in the form of Senior Research Fellowship (SRF) and the author, Salini Kombiyil, is thankful to Department of Biotechnology (DBT), New Delhi, and Government of India for supporting the grants in the form of Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivasithambaram Niranjali Devaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandhakumar, R., Salini, K. & Niranjali Devaraj, S. Morin augments anticarcinogenic and antiproliferative efficacy against 7,12-dimethylbenz(a)-anthracene induced experimental mammary carcinogenesis. Mol Cell Biochem 364, 79–92 (2012). https://doi.org/10.1007/s11010-011-1207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1207-5

Keywords

Navigation