Skip to main content
Log in

Effect of sydnone SYD-1 on certain functions of LPS-stimulated macrophages

Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In an earlier article, we demonstrated that sydnone SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) inhibits electron transport in the respiratory chain and uncouples oxidative phosphorylation, and postulated that these effects are probably involved in its antitumor activity. We now report the effect of SYD-1 on certain macrophage functions, considering the important role of these cells in inflammatory response and also the relevant anti-inflammatory activity reported for some sydnones. Incubation of macrophages with SYD-1 (5–100 μM) for 48 h did not affect the cell viability up to a concentration of 50 μM. However, at the highest concentration (100 μM), the compound decreased macrophage viability by ~20%. In assays involving 2 h and 24 h of incubation, SYD-1 (5–100 μM) did not affect the cell viability. The incubation of macrophages with the compound for 2 h promoted a dose-dependent reduction of phagocytic activity of up to ~65% (100 μM). SYD-1 (100 μM) was also able to increase the production of superoxide anion (~50%). In the absence of LPS, SYD-1 decreased NO production dose-dependently by up to ~80% (100 μM). When SYD-1 and LPS were incubated concomitantly, the decrease of NO promoted by SYD was the most pronounced, reaching up to ~98% at the same concentration (50 μM). SYD-1 dose-dependently suppressed IL-6 secretion by LPS-stimulated macrophages, reaching up to ~90% of inhibition at the highest concentration (100 μM). These results indicate that SYD-1 promotes effects similar to those described for anti-inflammatory and immunosuppressive drugs, thus motivating further studies to clarify the mechanisms involved in this activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ollis WD, Ramsden CA (1976) Meso-ionic compounds. Adv Heterocycl Chem 19:1–121

    Article  CAS  Google Scholar 

  2. Newton CG, Ramsden CA (1982) Meso-ionic heterocycles. Tetrahedron 38:2965–3011

    Article  CAS  Google Scholar 

  3. Satyanarayana K, Rao MNA (1995) Synthesis and antiinflammatory, analgesic and antipyretic testing of 4-[1-oxo-(3-substituted aryl)-2-propenyl]-3-phenylsydnones and 3-[4-(3-(substituted aryl)-1-oxo-2-propenyl) phenyl] sydnones. J Pharm Sci 84:263–266

    Article  PubMed  CAS  Google Scholar 

  4. Cardoso JC, Cadena SMSC, Zamproio A, Arruda AMS, Carnieri EGS, Echevarria A, Constantin A, Bracht A, Oliveira MBM (2004) Effects of a new 1,3,4-thiadiazolium mesoionic compound, MI-D, on the acute inflammatory response. Drug Dev Res 61:207–217

    Article  CAS  Google Scholar 

  5. Montanari CA, Beezer AE, Sandal JPB, Montanar MCL, Miller J, Giesbrecht AM (1992) On the interaction of some mesoionic compounds with Saccharomyces cerivisiae by biological microcalorimetry. Rev Microbiol 23:274–278

    CAS  Google Scholar 

  6. Corell T, Pedersen SB, Lissau B, Moilanen E, Metsä-Ketelä T, Kankaanranta H, Vuorinen P, Vapaatalo P, Rydell E, Andersson R, Marcinkiewicz E, Korbut R, Gryglewski RJ (1994) Pharmacology of mesoionic oxatriazole derivatives in blood, cardiovascular and respiratory systems. Pol J Pharm 46:553–566

    CAS  Google Scholar 

  7. Grynberg N, Gomes R, Shinzato T, Echevarria A, Miller J (1992) Some new aryl-sydnones: effects on murine tumours. Anticancer Res 12:1025–1028

    PubMed  CAS  Google Scholar 

  8. Grynberg N, Santos AC, Echevarria A (1997) Synthesis and in vivo antitumor activity of new heterocyclic derivatives of the 1,3,4-thiadiazolium-2-aminide class. Anti-Cancer Drug 8:88–91

    Article  CAS  Google Scholar 

  9. Senff-Ribeiro A, Echevarria A, Silva EF, Veiga SS, Oliveira MBM (2003) Effects of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on B16-F10 murine melanoma. Melanoma Res 13:465–472

    Article  PubMed  CAS  Google Scholar 

  10. Senff-Ribeiro A, Echevarria A, Silva EF, Veiga SS, Oliveira MBM (2004) Antimelanoma activity of 1,3,4-thiadiazolium mesoionics: a structure-activity relationship study. Anti-Cancer Drugs 15:269–275

    Article  PubMed  CAS  Google Scholar 

  11. Senff-Ribeiro A, Echevarria A, Silva EF, Veiga SS, Oliveira MBM (2004) Cytotoxic effect of a new 1,3,4-tiadiazolium mesoiônico compound (MI-D) on cell lines of human melanoma. Brit J Cancer 91:297–304

    PubMed  CAS  Google Scholar 

  12. Moustafa MAA, Eisa HM (1992) Synthesis and antimicrobial activity of 3-(substituted-phenyl)—sydnones. Arch Pharm 325:397–401

    Article  CAS  Google Scholar 

  13. Dunkley CS, Thoman CJ (2003) Synthesis and biological evaluation of a novel phenyl substituted sydnone series as potential antitumor agents. Bioorg Med Chem Lett 13:2899–2901

    Article  PubMed  CAS  Google Scholar 

  14. Halila GC, Oliveira MB, Echevarria A, Belém AC, Rocha ME, Carnieri EG, Martinez GR, Noleto GR, Cadena SM (2007) Effect of sydnone SYD-1, a mesoionic compound, on energy-linked functions of rat liver mitochondria. Chem Biol Interact 169(3):160–170

    Article  PubMed  CAS  Google Scholar 

  15. Bukke B, Lewis CE (2002) The macrophages. Oxford University Press, London

    Google Scholar 

  16. Akira S (2000) The role of IL-18 in innate immunity. Curr Opi Immunol 12:59–63

    Article  CAS  Google Scholar 

  17. Sinigaglia F, D’ Ambrosio D, Panina-ordignon P, ordignon P, Rogge L (1997) Regulation of the IL-12/IL-12R axis: a critical step in T-help cell differentiation and effector function. Immunol Rev 170:65–72

    Article  Google Scholar 

  18. Khanduja KL, Sohi KK, Pathak CM, Kaushik G (2006) Nimesulide inhibits lipopolysaccharide-induced production of superoxide anions and nitric oxide and iNOS expression in alveolar macrophages. Life Sci 78:1662–1669

    Article  PubMed  CAS  Google Scholar 

  19. Kishimoto T (2006) Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 8:1–6

    Article  Google Scholar 

  20. Min KR, Lee H, Kim BH, Chung E, Cho SM, Kim Y (2005) Inhibitory effect of 6-hydroxy-7-methoxychroman-2-carboxylic acid phenylamide on nitric oxide and interleukin-6 production in macrophages. Life Sci 77:3247–3257

    Google Scholar 

  21. Klimp AH, de Vries EG, Scherphof GL, Daemen T (2002) A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol 44(2):143–161

    Article  PubMed  CAS  Google Scholar 

  22. Verma N, Tripathi SK, Sahu D, Das HR, Das RH (2010) Evaluation of inhibitory activities of plant extracts on production of LPS-stimulated pro-inflammatory mediators in J774 murine macrophages. Mol Cell Biochem 336:127–135

    Article  PubMed  CAS  Google Scholar 

  23. Wagner H, Hill JB (1974) Anti-inflammatory sydnones. 1. J Med Chem 17(12):1337–1338

    Article  PubMed  CAS  Google Scholar 

  24. Hill JB, Ray RE, Wagner H, Aspinall R (1975) Antiinflammatory sydnones. 2. J Med Chem 18(1):50–53

    Article  PubMed  CAS  Google Scholar 

  25. Satyanarayana K, Rao MNA (1995) Synthesis of 4-[5-(substituted aryl)-4,5-dihydro-1H-pyrazol-3-yl]-3-phenyl-sydnones as anti-inflammatory, antiarthritic and analgesic agents. Eur J Med Chem 30:641–645

    Article  CAS  Google Scholar 

  26. Sasada M, Pabt MJ, Johnston JRB (1983) Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide-producing NADPH oxidase. J Biol Chem 258(16):9631–9635

    PubMed  CAS  Google Scholar 

  27. Reilly TP, Belleveue FHIII, Worster PM, Svesson CK (1998) Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone. Biochem Pharmacol 55:803–808

    Article  PubMed  CAS  Google Scholar 

  28. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N nitrates] in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  29. Ramesh HP, Yamaki K, Tsushida T (2002) Effects of fenugreek (Trigonella foenum-graecum L.) galactomannan fractions on phagocytosis in rat macrophages and on proliferation and IgM secretion in HB4C5 cells. Carbohyd Polym 50:79–83

    Article  CAS  Google Scholar 

  30. Buchi DF, Souza W (1993) Internalization of surface components during Fc-receptor mediated phagocytosis. Cell Struct Funct 18:399–407

    Article  Google Scholar 

  31. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  32. Mosser DM (2003) The many faces of macrophages activation. J Leukocyte Biol 73:209–212

    Article  PubMed  CAS  Google Scholar 

  33. Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H (2003) Molecular mechanisms of macrophages activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Therapeut 100:171–194

    Article  CAS  Google Scholar 

  34. Cho JY (2007) Immmunomodulatory Effect of Nonsteroidal Anti-inflammatory Drugs (NSAIDs) at clinically available doses. Arch Pharm Res 30(1):64–74

    Article  PubMed  CAS  Google Scholar 

  35. Long F, wang Y-X, Liu L, Zhou J, Cui R-Y, Jiang C-L (2005) Rapid nongenomic inhibitory effects of glucocorticoids on phagocytosis and superoxide anion production by nacrophages. Steroids 70:55–61

    Article  PubMed  CAS  Google Scholar 

  36. Attur MG, Patel R, Thakker G, Vyas P, levartovsky D, Patel P, Naqvi S, Raza R, Patel K, Abramson D, Bruno G, Abramson SB, Amin AR (2000) Differential anti-inflammatory effects of immunosuppressive drugs: cyclosporin, rapamycin and FK-506 on inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and PGE2 production. Inflamm Res 49:020–026

    Article  CAS  Google Scholar 

  37. Petronilli V, Nicolli A, Costantini A, Colonna R (1994) Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochim Biophys Acta 1187:255–259

    Article  PubMed  CAS  Google Scholar 

  38. Kim J, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470

    Article  PubMed  CAS  Google Scholar 

  39. Shin H-M, Lee YR, Chang YS, Lee J-Y, Kim BH, Min KR, Kim Y (2006) Suppression of interleukin-6 production in macrophages by furonaphthoquinone NFD-37. Int Immunopharmacol 6:916–923

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by the Brazilian research funding agencies CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Maria Suter Correia Cadena.

Additional information

E. L. Bizetto and G. R. Noleto contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bizetto, E.L., Noleto, G.R., Echevarria, A. et al. Effect of sydnone SYD-1 on certain functions of LPS-stimulated macrophages. Mol Cell Biochem 360, 15–21 (2012). https://doi.org/10.1007/s11010-011-1038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1038-4

Keywords

Navigation