Skip to main content

Advertisement

Log in

FoxO1 regulates muscle fiber-type specification and inhibits calcineurin signaling during C2C12 myoblast differentiation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adult skeletal muscle fibers can be categorized into slow-oxidative and fast-glycolytic subtypes based on specialized metabolic and contractile properties. The Forkhead box O1 (FoxO1) transcription factor governs muscle growth, metabolism, and cell differentiation, and has been shown to be involved in regulating muscle fiber type specification. However, to date, the mechanism behind FoxO1-mediated fiber type diversity is still unclear. In this article, FoxO1 being expressed preferentially in fast twitch fiber enriched muscles is reported. Moreover, the autors also detected that FoxO1 expression decreased in both fast and slow muscles from mice undergoing endurance exercise which induced a fast-to-slow fiber type transition. Using C2C12 myoblast, constitutively active FoxO1 mutant altered the proportion of muscle fiber type composition toward a fast-glycolytic phenotype and attenuated calcineurin phosphatase activity. In addition, a transcriptionally inactive FoxO1 by resveratrol triggered the expression of genes related to slow-oxidative muscle but not sufficient to induce a complete slow fiber transformation. Taken together, these results suggest that FoxO1 up-regulates fast fiber-type formation and down-regulates muscle oxidative capacity at least in part through inhibition of the calcineurin pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37

    Article  CAS  PubMed  Google Scholar 

  2. Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50(6):500–509

    Article  CAS  PubMed  Google Scholar 

  3. Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76(2):371–423

    CAS  PubMed  Google Scholar 

  4. Schiaffino S, Sandri M, Murgia M (2007) Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22:269–278

    CAS  Google Scholar 

  5. Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, Hutcheson KA, DiMaio JM, Olson EN, Bassel-Duby R, Williams RS (2001) Activation of mef2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 20(22):6414–6423

    Article  CAS  PubMed  Google Scholar 

  6. Pette D, Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115(5):359–372

    CAS  PubMed  Google Scholar 

  7. Demirel HA, Powers SK, Naito H, Hughes M, Coombes JS (1999) Exercise-induced alterations in skeletal muscle myosin heavy chain phenotype: dose-response relationship. J Appl Physiol 86(3):1002–1008

    CAS  PubMed  Google Scholar 

  8. Birkenkamp KU, Coffer PJ (2003) Regulation of cell survival and proliferation by the FOXO (forkhead box, class o) subfamily of forkhead transcription factors. Biochem Soc Trans 31(Pt 1):292–297

    CAS  PubMed  Google Scholar 

  9. Barthel A, Schmoll D, Kruger KD, Bahrenberg G, Walther R, Roth RA, Joost HG (2001) Differential regulation of endogenous glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression by the forkhead transcription factor FKHR in H4IIE-hepatoma cells. Biochem Biophys Res Commun 285(4):897–902

    Article  CAS  PubMed  Google Scholar 

  10. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, Burgering BM, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ (2000) Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol 20(24):9138–9148

    Article  CAS  PubMed  Google Scholar 

  11. Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404(6779):782–787

    Article  CAS  PubMed  Google Scholar 

  12. Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP (2006) Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576(Pt 3):923–933

    Article  CAS  PubMed  Google Scholar 

  13. Southgate RJ, Neill B, Prelovsek O, El-Osta A, Kamei Y, Miura S, Ezaki O, McLoughlin TJ, Zhang W, Unterman TG, Febbraio MA (2007) FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle. J Biol Chem 282(29):21176–21186

    Article  CAS  PubMed  Google Scholar 

  14. Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of Foxo shuttling: mechanisms of Foxo translocation and transcriptional regulation. Biochem J 380(Pt 2):297–309

    Google Scholar 

  15. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  16. Hribal ML, Nakae J, Kitamura T, Shutter JR, Accili D (2003) Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol 162(4):535–541

    Article  CAS  PubMed  Google Scholar 

  17. Bois PR, Grosveld GC (2003) FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J 22(5):1147–1157

    Article  CAS  PubMed  Google Scholar 

  18. Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279(39):41114–41123

    Article  CAS  PubMed  Google Scholar 

  19. Kitamura T, Kitamura YI, Funahashi Y, Shawber CJ, Castrillon DH, Kollipara R, DePinho RA, Kitajewski J, Accili D (2007) A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J Clin Invest 117(9):2477–2485

    Article  CAS  PubMed  Google Scholar 

  20. Bigard X, Sanchez H, Zoll J, Mateo P, Rousseau V, Veksler V, Ventura-Clapier R (2000) Calcineurin co-regulates contractile and metabolic components of slow muscle phenotype. J Biol Chem 275(26):19653–19660

    Article  CAS  PubMed  Google Scholar 

  21. Olson EN, Williams RS (2000) Remodeling muscles with calcineurin. Bioessays 22(6):510–519

    Article  CAS  PubMed  Google Scholar 

  22. Ni YG, Wang N, Cao DJ, Sachan N, Morris DJ, Gerard RD, Kuro OM, Rothermel BA, Hill JA (2007) Foxo transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proc Natl Acad Sci USA 104(51):20517–20522

    Article  CAS  PubMed  Google Scholar 

  23. Ni YG, Berenji K, Wang N, Oh M, Sachan N, Dey A, Cheng J, Lu G, Morris DJ, Castrillon DH, Gerard RD, Rothermel BA, Hill JA (2006) Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 114(11):1159–1168

    Article  CAS  PubMed  Google Scholar 

  24. Lara-Pezzi E, Winn N, Paul A, McCullagh K, Slominsky E, Santini MP, Mourkioti F, Sarathchandra P, Fukushima S, Suzuki K, Rosenthal N (2007) A naturally occurring calcineurin variant inhibits Foxo activity and enhances skeletal muscle regeneration. J Cell Biol 179(6):1205–1218

    Article  CAS  PubMed  Google Scholar 

  25. Nakao C, Ookawara T, Kizaki T, Oh-Ishi S, Miyazaki H, Haga S, Sato Y, Ji LL, Ohno H (2000) Effects of swimming training on three superoxide dismutase isoenzymes in mouse tissues. J Appl Physiol 88(2):649–654

    CAS  PubMed  Google Scholar 

  26. Ueno N, Oh-ishi S, Kizaki T, Nishida M, Ohno H (1997) Effects of swimming training on brown-adipose-tissue activity in obese ob/ob mice: GDP binding and UCP m-RNA expression. Res Commun Mol Pathol Pharmacol 95(1):92–104

    CAS  PubMed  Google Scholar 

  27. Huang H, Muddiman DC, Tindall DJ (2004) Androgens negatively regulate forkhead transcription factor FKHR (FOXO1) through a proteolytic mechanism in prostate cancer cells. J Biol Chem 279(14):13866–13877

    Article  CAS  PubMed  Google Scholar 

  28. Chow LS, Greenlund LJ, Asmann YW, Short KR, McCrady SK, Levine JA, Nair KS (2007) Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function. J Appl Physiol 102(3):1078–1089

    Article  CAS  PubMed  Google Scholar 

  29. Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA (1993) Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118(4):1137–1147

    CAS  PubMed  Google Scholar 

  30. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend saccharomyces cerevisiae lifespan. Nature 425(6954):191–196

    Article  CAS  PubMed  Google Scholar 

  31. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116(4):551–563

    Article  CAS  PubMed  Google Scholar 

  32. Bai L, Pang WJ, Yang YJ, Yang GS (2008) Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem 307(1–2):129–140

    CAS  PubMed  Google Scholar 

  33. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296(5567):530–534

    Article  CAS  PubMed  Google Scholar 

  34. Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, Ikeda K, Motoyama N (2002) Foxo forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J Biol Chem 277(30):26729–26732

    Article  CAS  PubMed  Google Scholar 

  35. Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275(7):4545–4548

    Article  CAS  PubMed  Google Scholar 

  36. Rothermel BA, Vega RB, Williams RS (2003) The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends Cardiovasc Med 13(1):15–21

    Article  CAS  PubMed  Google Scholar 

  37. Yang J, Rothermel B, Vega RB, Frey N, McKinsey TA, Olson EN, Bassel-Duby R, Williams RS (2000) Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ Res 87(12):E61–E68

    CAS  PubMed  Google Scholar 

  38. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412

    Article  CAS  PubMed  Google Scholar 

  39. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403

    Article  CAS  PubMed  Google Scholar 

  40. Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA (2005) Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 19(11):1498–1500

    CAS  PubMed  Google Scholar 

  41. Russell AP, Hesselink MK, Lo SK, Schrauwen P (2005) Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J 19(8):986–988

    CAS  PubMed  Google Scholar 

  42. Ropelle ER, Pauli JR, Cintra DE, Frederico MJ, de Pinho RA, Velloso LA, De Souza CT (2009) Acute exercise modulates the Foxo1/PGC-1α pathway in the liver of diet-induced obesity rats. J Physiol 587(Pt 9):2069–2076

    Article  CAS  PubMed  Google Scholar 

  43. Allen DL, Sartorius CA, Sycuro LK, Leinwand LA (2001) Different pathways regulate expression of the skeletal myosin heavy chain genes. J Biol Chem 276(47):43524–43533

    Article  CAS  PubMed  Google Scholar 

  44. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342

    Article  CAS  PubMed  Google Scholar 

  45. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122

    Article  CAS  PubMed  Google Scholar 

  46. Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99(25):15983–15987

    Article  CAS  PubMed  Google Scholar 

  47. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124

    Article  CAS  PubMed  Google Scholar 

  48. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801

    Article  CAS  PubMed  Google Scholar 

  49. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423(6939):550–555

    Article  CAS  PubMed  Google Scholar 

  50. Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing Foxo3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103(44):16260–16265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Major Projects for Genetically Modified Organisms Breeding (No. 2009ZX08009-157B). We thank Professor Haojie Huang (Minnesota University, USA) for the kind donation of FoxO1-WT and FoxO1-A3 plasmids. We also thank Post Ph.D Qingwu Shen for his kind help in the revision of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-she Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Y., Shi, Xe., Liu, Yg. et al. FoxO1 regulates muscle fiber-type specification and inhibits calcineurin signaling during C2C12 myoblast differentiation. Mol Cell Biochem 348, 77–87 (2011). https://doi.org/10.1007/s11010-010-0640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0640-1

Keywords

Navigation