Skip to main content
Log in

Differential induction of cellular proliferation, hypertrophy and apoptosis in H9c2 cardiomyocytes by exogenous tissue factor

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Recent evidence has shown that prolonged exposure to exogenous tissue factor (TF) can alter the cellular functions of cardiomyocytes resulting in cardiac dysfunction. The effect of TF may arise from local inflammation within or in the vicinity of the heart. The aim of this study was to investigate the effect of TF on cardiomyocyte proliferation and growth. H9c2 rat cardiomyocytes were exposed to a range of concentrations of recombinant TF (rTF) (1.3–52 ng/ml) for up to 10 days and the outcome on cell proliferation and induction of apoptosis measured. At lower concentrations examined (1.3 ng/ml), rTF had a proliferative influence on the H9c2 cells. In contrast, elevated concentrations of rTF (52 ng/ml) induced cellular apoptosis as indicated by increased caspase-3 activity and nuclear localisation of p53. Moreover, incubation with intermediate concentrations of rTF (13 ng/ml) resulted in an initial increase in proliferation but subsequently, led to cellular apoptosis by day 7 of the incubation. In order to determine if these effects induced hypertrophic cell growth, expression of mechano-growth factor (MGF) was analysed. Incubation of cells with rTF resulted in enhanced expression of MGF particularly at the intermediate concentrations of rTF (13 ng/ml) as well as mean cellular transverse diameter. In addition, there was a rapid increase in the expression of atrial natriuretic factor (ANF) in the cells, on incubation with rTF but diminished rapidly when exposed to higher concentrations of rTF. These data indicate that exposure to increasing concentrations of rTF can accelerate the rate of cardiomyocyte turnover which may ultimately lead to depletion of viable cells within the heart. Moreover, at lower concentrations of rTF, the induction of cell proliferation together with hypertrophic markers indicates that rTF may contribute to the induction and progression of cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Spann JF Jr, Buccino RA, Sonnenblick EH, Braunwald E (1967) Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ Res 21:341–354

    PubMed  Google Scholar 

  2. Nadal-Ginard IB, Kajstura J, Leri A, Anversa P (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92:139–150

    Article  CAS  PubMed  Google Scholar 

  3. Hang T, Jiang S, Wang C, Xie D, Ren H, Zhuge H (2007) Apoptosis and expression of uncoupling protein 2 in pressure overload induced left ventricular hypertrophy. Acta Cardiol 62:461–465

    Article  PubMed  Google Scholar 

  4. Goldspink G (1999) Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat 194:323–334

    Article  CAS  PubMed  Google Scholar 

  5. Yang SY, Goldspink G (2002) Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett 522:156–160

    Article  CAS  PubMed  Google Scholar 

  6. Harridge SD (2003) Ageing and local growth factors in muscle. Scand J Med Sci Sports 13:34–39

    Article  PubMed  Google Scholar 

  7. Coerper S, Wolf S, Von Kiparski S, Thomas S, Zittel TT, Ranke MB, Hunt TK, Becker HD (2001) Insulin-like growth factor I accelerates gastric ulcer healing by stimulating cell proliferation and by inhibiting gastric acid secretion. Scand J Gastroenterol 36:921–927

    Article  CAS  PubMed  Google Scholar 

  8. Lloyd RV, Erickson LA, Nascimento AG, Kloppel G (1999) Neoplasms causing nonhyperinsulinemic hypoglycemia. Endocr Pathol 10:291–297

    Article  PubMed  Google Scholar 

  9. Pawlinski R, Fernandes A, Kehrle B, Pedersen B, Parry G, Erlich J, Pyo R, Gutstein D, Zhang J, Castellino F, Melis E, Carmeliet P, Baretton G, Luther T, Taubman M, Rosen E, Mackman N (2002) Tissue factor deficiency causes cardiac fibrosis and left ventricular dysfunction. Proc Natl Acad Sci USA 99:15333–15338

    Article  CAS  PubMed  Google Scholar 

  10. Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA 97:5255–5260

    Article  CAS  PubMed  Google Scholar 

  11. Riewald M, Ruf W (2002) Orchestration of coagulation protease signaling by tissue factor. Trends Cardiovasc Med 12:149–154

    Article  CAS  PubMed  Google Scholar 

  12. Peppelenbosch MP, Versteeg HH (2001) Cell biology of tissue factor, an unusual member of the cytokine receptor family. Trends Cardiovasc Med 11:335–339

    Article  CAS  PubMed  Google Scholar 

  13. Pradier A, Ettelaie C (2008) The influence of exogenous tissue factor on the regulators of proliferation and apoptosis in endothelial cells. J Vasc Res 45:19–32

    Article  CAS  PubMed  Google Scholar 

  14. Ray B, Chetter IC, Lee HL, Ettelaie C, McCollum PT (2007) Plasma tissue factor is a predictor for restenosis after femoropopliteal angioplasty. Br J Surg 94:1092–1095

    Article  CAS  PubMed  Google Scholar 

  15. Breitenstein A, Tanner FC, Lüscher TF (2010) Tissue factor and cardiovascular disease: quo vadis? Circ J 74:3–12

    Article  CAS  PubMed  Google Scholar 

  16. Muller DN, Mervaala EM, Dechend R, Fiebeler A, Park JK, Schmidt F, Theuer J, Breu V, Mackman N, Luther T, Scheider W, Gulba D, Ganten D, Haller H, Luft FC (2000) Angiotensin II (AT(1)) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. Am J Pathol 157:111–122

    CAS  PubMed  Google Scholar 

  17. Chi L, Gibson G, Peng YW, Bousley R, Brammer D, Rekhter M, Chen J, Leadley R (2004) Characterization of a tissue factor/factor VIIa-dependent model of thrombosis in hypercholesterolemic rabbits. J Thromb Haem 2:85–92

    Article  CAS  Google Scholar 

  18. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  PubMed  Google Scholar 

  19. Ettelaie C, Collier ME, James NJ, Li C (2007) Induction of tissue factor expression and release as microparticles in ECV304 cell line by Chlamydia pneumoniae infection. Atherosclerosis 190(2):343–351

    Article  CAS  PubMed  Google Scholar 

  20. Hutter R, Valdiviezo C, Sauter BV, Savontaus M, Chereshnev I, Carrick FE, Bauriedel G, Luderitz B, Fallon JT, Fuster V, Badimon JJ (2004) Caspase-3 and tissue factor expression in lipid-rich plaque macrophages: evidence for apoptosis as link between inflammation and atherothrombosis. Circulation 109:2001–2008

    Article  CAS  PubMed  Google Scholar 

  21. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  22. Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA 97:5255–5260

    Article  CAS  PubMed  Google Scholar 

  23. Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A (2010) The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol 26:140–145

    PubMed  Google Scholar 

  24. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  CAS  PubMed  Google Scholar 

  25. Gopisetty G, Ramachandran K, Singal R (2006) DNA methylation and apoptosis. Mol Immunol 43:1729–1740

    Article  CAS  PubMed  Google Scholar 

  26. Ryan KM, Phillips AC, Vousden KH (2001) Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13:332–337

    Article  CAS  PubMed  Google Scholar 

  27. Clerk A (2003) The radical balance between life and death. J Mol Cell Cardiol 35:02–599

    Article  Google Scholar 

  28. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    Article  CAS  PubMed  Google Scholar 

  29. Mackman N (1995) Regulation of tissue factor gene. FASEB 9:883–889

    CAS  Google Scholar 

  30. Yuchuan L, Pelekanakis K, Woolkalis MJ (2004) Thrombin and tumor necrosis factor α synergistically stimulate tissue factor expression in human endothelial cells: regulation through c-Fos and c-Jun. J Biol Chem 279:36142–36147

    Article  Google Scholar 

  31. Boateng SY, Seymour AM, Bhutta NS, Dunn MJ, Yacoub MH, Boheler KR (1998) Sub-antihypertensive doses of ramipril normalize sarcoplasmic reticulum calcium ATPase expression and function following cardiac hypertrophy in rats. J Mol Cell Cardiol 30:2683–2694

    Article  CAS  PubMed  Google Scholar 

  32. Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H, Kambayashi Y, Inouye K, Imura H (1991) Brain natriuretic peptide as a novel cardiac hormone in humans Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 87:1402–1412

    Article  CAS  PubMed  Google Scholar 

  33. Wei CM, Heublein DM, Perrella MA, Lerman A, Rodeheffer RJ, Mcgregor CG, Edwards WD, Schaff HV, JCJr Burnett (1993) Natriuretic peptide system in human heart failure. Circulation 88:1004–1009

    CAS  PubMed  Google Scholar 

  34. Goldspink G (2002) Gene expression in skeletal muscle. Biochem Soc Trans 30:285–290

    Article  CAS  PubMed  Google Scholar 

  35. Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, Tedgui A (1999) Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 99:348–353

    CAS  PubMed  Google Scholar 

  36. Nieuwland R, Berckmans RJ, Mcgregor S, Boing AN, Romijn FP, Westendorp RG, Hack CE, Sturk A (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95:930–935

    CAS  PubMed  Google Scholar 

  37. Diamant M, Nieuwland R, Pablo RF, Sturk A, Smit JW, Radder JK (2002) Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 106:2442–2447

    Article  CAS  PubMed  Google Scholar 

  38. Hilfiker-Kleiner D, Landmesser U, Drexter H (2006) Molecular mechanisms in heart failure: focus on cardiac hypertrophy, inflammation, angiogenesis, and apoptosis. J Am Coll Cardiol 48:A56–A66

    Article  CAS  Google Scholar 

  39. van Amerongen MJ, Engel FB (2008) Features of cardiomyocyte proliferation and its potential for cardiac regeneration. J Cell Mol Med 12:2233–2244

    Article  PubMed  Google Scholar 

  40. Hosoda T, Kajstura J, Leri A, Anversa P (2010) Mechanisms of myocardial regeneration. Circ J 74:13–17

    Article  CAS  PubMed  Google Scholar 

  41. Stastna M, Abraham MR, Van Eyk JE (2009) Cardiac stem/progenitor cells, secreted proteins, and proteomics. FEBS Lett 583:1800–1807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge the support of Heart Research UK for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Ettelaie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkistis Frentzou, G., Collier, M.E.W., Seymour, AM.L. et al. Differential induction of cellular proliferation, hypertrophy and apoptosis in H9c2 cardiomyocytes by exogenous tissue factor. Mol Cell Biochem 345, 119–130 (2010). https://doi.org/10.1007/s11010-010-0565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0565-8

Keywords

Navigation