Skip to main content
Log in

Endothelial arginase II responds to pharmacological inhibition by elevation in protein level

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Arginase is an enzyme which converts arginine to ornithine and urea. Recently, arginase has been implicated in many physiological and pathological processes including vascular diseases. Inhibition of arginase activity by pharmacological inhibitors is a useful tool to study the biology of arginases and their possible role in therapy. There are several arginase-specific inhibitors commercially available. Herein, we show that some of these inhibitors lead to an increase in arginase II protein level and activity. These effects should be anticipated when these inhibitors are in use or during the testing of new arginase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Gotoh T, Araki M, Mori M (1997) Chromosomal localization of the human arginase II gene and tissue distribution of its mrnA. Biochem Biophys Res Commun 233:487–491

    Article  CAS  PubMed  Google Scholar 

  2. Sparkes RS, Dizikes GJ, Klisak I, Grody WW, Mohandas T, Heinzmann C, Zollman S, Lusis AJ, Cederbaum SD (1986) The gene for human liver arginase (ARG1) is assigned to chromosome band 6q23. Am J Hum Genet 39:186–193

    CAS  PubMed  Google Scholar 

  3. Wu GY, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    CAS  PubMed  Google Scholar 

  4. Morris Jr SM (2009) Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 157:922–930

    Article  Google Scholar 

  5. Durante W, Johnson FK, Johnson RA (2007) Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 34:906–911

    Article  CAS  PubMed  Google Scholar 

  6. Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158:638–651

    Article  CAS  PubMed  Google Scholar 

  7. Christianson DW (2005) Arginase: structure, mechanism, and physiological role in male and female sexual arousal. Acc Chem Res 38:191–201

    Article  CAS  PubMed  Google Scholar 

  8. Kim NN, Cox JD, Baggio RF, Emig FA, Mistry SK, Harper SL, Speicher DW, Morris, Sidney M, Ash DE, Traish A, Christianson DW (2001) Probing erectile function: S-(2-Boronoethyl)-l-cysteine binds to arginase as a transition state analogue and enhances smooth muscle relaxation in human penile corpus cavernosum. Biochemistry 40:2678–2688

    Article  CAS  PubMed  Google Scholar 

  9. Buga GM, Singh R, Pervin S, Rogers NE, Schmitz DA, Jenkinson CP, Cederbaum SD, Ignarro LJ (1996) Arginase activity in endothelial cells: inhibition by NG-hydroxy-l-arginine during high-output NO production. Am J Physiol 271:H1988–H1998

    CAS  PubMed  Google Scholar 

  10. Boucher JL, Custot J, Vadon S, Delaforge M, Lepoivre M, Tenu JP, Yapo A, Mansuy D (1994) N[omega]-hydroxy-l-arginine, an intermediate in the l-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase. Biochem Biophys Res Commun 203:1614–1621

    Article  CAS  PubMed  Google Scholar 

  11. Tenu J-P, Lepoivre M, Moali C, Brollo M, Mansuy D, Boucher J-L (1999) Effects of the new arginase inhibitor N[omega]-hydroxy-nor-arginine on NO synthase activity in murine macrophages. Nitric Oxide 3:427–438

    Article  CAS  PubMed  Google Scholar 

  12. Block ER, Patel JM, Sheridan NP (1986) Endotoxin protects against hyperoxic decrease in membrane fluidity in endothelial cells but not in fibroblasts. Lab Invest 54:146–153

    CAS  PubMed  Google Scholar 

  13. Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  CAS  PubMed  Google Scholar 

  14. Larson E, Howlett B, Jagendorf A (1986) Artificial reductant enhancement of the Lowry method for protein determination. Anal Biochem 155:243–248

    Article  CAS  PubMed  Google Scholar 

  15. Corraliza IM, Campo ML, Soler G, Modolell M (1994) Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 174:231–235

    Article  CAS  PubMed  Google Scholar 

  16. Zharikov S, Krotova K, Hu H, Baylis C, Johnson RJ, Block ER, Patel J (2008) Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Physiol Cell Physiol 295:C1183–C1190

    Article  CAS  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  18. Vockley JG, Jenkinson CP, Shukla H, Kern RM, Grody WW, Cederbaum SD (1996) Cloning and characterization of the human type II arginase gene. Genomics 38:118–123

    Article  CAS  PubMed  Google Scholar 

  19. Morris SM, Bhamidipati D, Kepka-Lenhart D (1997) Human type II arginase: sequence analysis and tissue-specific expression. Gene 193:157–161

    Article  CAS  PubMed  Google Scholar 

  20. Boess F, Kamber M, Romer S, Gasser R, Muller D, Albertini S, Suter L (2003) Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems. Toxicol Sci 73:386–402

    Article  CAS  PubMed  Google Scholar 

  21. Chrzanowska A, Krawczyk M, Baranczyk-Kuzma A (2008) Changes in arginase isoenzymes pattern in human hepatocellular carcinoma. Biochem Biophys Res Commun 377:337–340

    Article  CAS  PubMed  Google Scholar 

  22. Reczkowski RS, Ash DE (1994) Rat liver arginase: kinetic mechanism, alternate substrates, and inhibitors. Arch Biochem Biophys 312:31–37

    Article  CAS  PubMed  Google Scholar 

  23. Colleluori DM, Morris SM, Ash DE (2001) Expression, purification, and characterization of human type II arginase. Arch Biochem Biophys 389:135–143

    Article  CAS  PubMed  Google Scholar 

  24. Kuhn NJ, Ward S, Piponski M, Young TW (1995) Purification of human hepatic arginase and its manganese (II)-dependent and pH-dependent interconversion between active and inactive forms: a possible pH-sensing function of the enzyme on the ornithine cycle. Arch Biochem Biophys 320:24–34

    Article  CAS  PubMed  Google Scholar 

  25. Colleluori DM, Ash DE (2001) Classical and slow-binding inhibitors of human type II arginase. Biochemistry 40:9356–9362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by National Institutes of Health Grants HL-68607, HL-85133 and VA Merit Review (to J.M.P), as well as Florida DOH Grant 08KN-08-17234 (to K.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Krotova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krotova, K., Patel, J.M., Block, E.R. et al. Endothelial arginase II responds to pharmacological inhibition by elevation in protein level. Mol Cell Biochem 343, 211–216 (2010). https://doi.org/10.1007/s11010-010-0515-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0515-5

Keywords

Navigation