Skip to main content
Log in

Strobilanthes crispus attenuates renal carcinogen, iron nitrilotriacetate (Fe-NTA)-mediated oxidative damage of lipids and DNA

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study was aimed to evaluate the effect of Strobilanthes crispus extract for possible protection against lipid peroxidation and DNA damage induced by iron nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2). Fe-NTA is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of H2O2-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. Incubation of postmitochondrial supernatant and/or calf thymus DNA with H2O2 (40 mM) in the presence of Fe-NTA (0.1 mM) induces lipid peroxidation and DNA damage to about 2.3-fold and 2.9-fold, respectively, as compared to control (P < 0.05). In lipid peroxidation protection studies, S. crispus treatment showed a dose-dependent inhibition (45–53% inhibition, P < 0.05) of Fe-NTA and H2O2 induced lipid peroxidation. Similarly, in DNA damage protection studies, S. crispus treatment also showed a dose-dependent inhibition (18–30% inhibition, P < 0.05) of DNA damage. In addition, the protection was closely related to the content of phenolic compounds as evident by S. crispus extract showing the value of 124.48 mg/g total phenolics expressed as gallic acid equivalent (GAE, mg/g of extract). From these studies, it is concluded that S. crispus inhibits peroxidation of membrane lipids and DNA damage induced by Fe-NTA and H2O2 and possesses the potential to be used to treat or prevent degenerative diseases where oxidative stress is implicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32:1870–1874

    CAS  PubMed  Google Scholar 

  2. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  3. Sies H (1986) Biochemistry of oxidative stress. Angew Chem Int Engl 25:1058–1071

    Article  Google Scholar 

  4. Cheeseman KH, Slater TF (1993) An introduction to free radical biochemistry. Br Med Bull 49:481–493

    CAS  PubMed  Google Scholar 

  5. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    Article  CAS  PubMed  Google Scholar 

  6. Radi R (1993) Biological antioxidant defenses. Toxicol Ind Health 9:53–62

    CAS  PubMed  Google Scholar 

  7. Krinsky NI (1992) Mechanism of action of biological antioxidants. Proc Soc Exp Biol Med 200:248–254

    CAS  PubMed  Google Scholar 

  8. Gupta A, Sharma S, Kaur I et al (2009) Renoprotective effects of sesamol in ferric nitrilotriacetate (Fe-NTA)-induced oxidative renal injury in rats. Basic Clin Pharmacol Toxicol 104:316–321

    Article  CAS  PubMed  Google Scholar 

  9. Iqbal M, Okazaki Y, Okada S (2009) Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): implications for cancer prevention. Mol Cell Biochem 324:157–164

    Article  CAS  PubMed  Google Scholar 

  10. Aruoma OI, Halliwell B, Gajewski E et al (1989) Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem 264:20509–20512

    CAS  PubMed  Google Scholar 

  11. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  12. Awai M, Nagasaki M, Yamanoi Y et al (1979) Induction of diabetes in animals by parental administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol 95:663–673

    CAS  PubMed  Google Scholar 

  13. Okada S, Midorikawa O (1982) Induction of rat renal adenocarcinoma by ferric nitrilotriacetate. Jpn Arch Int Med 29:485–491

    CAS  Google Scholar 

  14. Iqbal M, Giri U, Athar M (1995) Ferric nitrilotriacetate (Fe-NTA) is a potent hepatic tumor promoter and acts through the generation of oxidative stress. Biochem Biophys Res Commun 212:557–563

    Article  CAS  PubMed  Google Scholar 

  15. Iqbal M, Okazaki Y, Okada S (2003) In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide-induced peroxidation of microsomal membrane lipids and DNA damage. Teratog Carcinog Mutagen 1:151–160

    Article  PubMed  CAS  Google Scholar 

  16. Hartwig A, Klyszez-Nasko H, Schlepegrell R et al (1993) Cellular damage by ferric nitrilotriacetate and ferric citrate in V79 cells: interrelationship between lipid peroxidation, DNA strand breaks and sister chromatid exchanges. Carcinogenesis 14:107–112

    Article  CAS  PubMed  Google Scholar 

  17. Kellof GJ (2000) Perspectives on cancer chemoprevention research and drug development. Adv Cancer Res 78:199–334

    Article  Google Scholar 

  18. Wattenberg LW (1983) Inhibition of neoplasia by minor dietary constituents. Cancer Res 43:2448s–2453s

    CAS  PubMed  Google Scholar 

  19. Husain SR, Cillard J, Cillard P (1987) Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26:2489–2492

    Article  CAS  Google Scholar 

  20. Sumarto PA (1977) Materia medica Indonesis, 1st edn. Penerbitan Directorat Jenderal Pengawasan Obat dan Makanan, Jakarta, Indonesia, pp 95–99

    Google Scholar 

  21. Ismali M, Manickam E, Danial AM et al (2000) Chemical composition and antioxidant activity of Strobilanthes crispus leaf extract. J Nutr Biochem 11:536–542

    Article  Google Scholar 

  22. Kusumoto JT, Shimada I, Kakiuchi N et al (1992) Inhibitory effects of Indonesian plant extracts on reverse transcriptase of an RNA tumor virus (I). Phytotherap Res 6:241–244

    Article  CAS  Google Scholar 

  23. Fadzelly ABM, Asmah R, Fauziah O (2006) Effects of Strobilanthes crispus tea aqueous extracts on glucose and lipid profile in normal and streptozotacin-induced hyperglycemic rats. Plant Food Hum Nutr 61:7–12

    Article  Google Scholar 

  24. Abu Bakar MF, Teh AH, Rahmat A et al (2004) Antioxidant tea from leaves of Strobilanthes crispus. J Trop Med Plants 5:199–204

    Google Scholar 

  25. Maghrani M, Lemhadri A, Jouad H et al (2003) Effect of the desert plant Retama raetam on glycemia in normal and streptozotacin-induced diabetic rats. J Etnopharmacol 87:21–25

    Article  Google Scholar 

  26. Mohandas J, Marshall JJ, Duggin GG et al (1984) Differential distribution of glutathione and glutathione related enzymes in rabbit kidney: possible implications in analgesic neuropathy. Cancer Res 44:5086–5091

    CAS  PubMed  Google Scholar 

  27. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. In: Packer L (ed) Methods in enzymology, vol 52. Academic press, San Diego, pp 302–310

    Google Scholar 

  28. Iqbal M, Sharma SD, Okada S (2004) Probucol as a potent inhibitor of oxygen radical-induced lipid peroxidation and DNA damage: in vitro studies. Redox Rep 9:167–172

    Article  CAS  PubMed  Google Scholar 

  29. Velioglu YS, Mazza G, Gao L et al (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  30. Del Maestro RF (1980) An approach to free radicals in medicine and biology. Acta Physiol Scand Suppl 492:153–168

    CAS  PubMed  Google Scholar 

  31. Liu F, Ng TB (2000) Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci 66:725–735

    Article  CAS  PubMed  Google Scholar 

  32. Halliwell B (1994) Free radicals and antioxidants: a personal view. Nutr Rev 52:253–265

    Article  CAS  PubMed  Google Scholar 

  33. Wattenberg LW, Coccia JB (1990) Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone carcinogenesis in mice by d-limonene and citrus fruits oils. Carcinogenesis 12:115–117

    Article  Google Scholar 

  34. Digiovanni J (1992) Multistage carcinogenesis in mouse skin. Pharmacol Ther 54:63–128

    Article  CAS  PubMed  Google Scholar 

  35. Iqbal M, Giri U, Giri DK et al (1999) Age dependent renal accumulation of 4-hydroxy-2-nonenal (HNE)-modified proteins following parental administration of ferric nitrilotriacetate commensurate with its differential toxicity: implications for the involvement of HNE-protein adducts in oxidative stress and carcinogenesis. Arch Biochem Biophys 365:101–112

    Article  CAS  PubMed  Google Scholar 

  36. Toyokuni S, Uchida K, Okamato K et al (1994) Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci USA 91:2616–2620

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Ministry of Higher Education, Malaysia for providing grant-in-aid No. FRG166-SP-2008 for scientific research to support these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, M., Shah, M.D., Lie, C.A. et al. Strobilanthes crispus attenuates renal carcinogen, iron nitrilotriacetate (Fe-NTA)-mediated oxidative damage of lipids and DNA. Mol Cell Biochem 341, 271–277 (2010). https://doi.org/10.1007/s11010-010-0458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0458-x

Keywords

Navigation