Skip to main content
Log in

Biochemical characterization of soluble nucleotide pyrophosphatase/phosphodiesterase activity in rat serum

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Biochemical properties of nucleotide pyrophosphatase/phosphodiesterase (NPP) in rat serum have been described by assessing its nucleotide phosphodiesterase activity, using p-nitrophenyl-5′-thymidine monophosphate (p-Nph-5′-TMP) as a substrate. It was demonstrated that NPP activity shares some typical characteristics described for other soluble NPP, such as divalent cation dependence, strong alkaline pH optimum (pH 10.5), inhibition by glycosaminoglycans, and K m for p-Nph-5′-TMP hydrolysis of 61.8 ± 5.2 μM. In order to characterize the relation between phosphodiesterase and pyrophosphatase activities of NPP, we have analyzed the effects of different natural nucleotides and nucleotide analogs. ATP, ADP, and AMP competitively inhibited p-Nph-5′-TMP hydrolysis with K i values ranging 13–43 μM. Nucleotide analogs, α,β-metATP, BzATP, 2-MeSATP, and dialATP behaved as competitive inhibitors, whereas α,β-metADP induced mixed inhibition, with K i ranging from 2 to 20 μM. Chromatographic analysis revealed that α,β-metATP, BzATP, and 2-MeSATP were catalytically degraded in the serum, whereas dialATP and α,β-metADP resisted hydrolysis, implying that the former act as substrates and the latter as true competitive inhibitors of serum NPP activity. Since NPP activity is involved in generation, breakdown, and recycling of extracellular adenine nucleotides in the vascular compartment, the results suggest that both hydrolyzable and non-hydrolyzable nucleotide analogs could alter the amplitude and direction of ATP actions and could have potential therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kunapuli SP, Daniel JL (1998) P2 receptor subtypes in the cardiovascular system. Biochem J 336:513–523

    CAS  PubMed  Google Scholar 

  2. Robson S, Sevigny J, Imai M, Guckelberger O, Enjyoji K (2000) Thromboregulatory potential of endothelial CD39/nucleoside triphosphate diphosphohydrolase: modulation of purinergic signalling in platelets. Emerg Ther Targets 4:155–171

    Article  CAS  Google Scholar 

  3. Marcus A, Broekman M, Drosopoulos J, Pinsky D, Islam N, Gayle R III, Maliszewski C (2001) Thromboregulation by endothelial cells: significance for occlusive vascular disease. Arterioscler Thromb Vasc Biol 21:178–182

    CAS  PubMed  Google Scholar 

  4. Birk AV, Broekman MJ, Gladek EM, Robertson HD, Drosopoulos JH, Marcus AJ, Szeto HH (2002) Role of extracellular ATP metabolism in regulation of platelet reactivity. J Lab Clin Med 140:166–175

    Article  CAS  PubMed  Google Scholar 

  5. Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600

    Article  CAS  PubMed  Google Scholar 

  6. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  7. Valera S, Hussy N, Evans RJ, Adami N, North RA, Suprenant A, Buell G (1994) A new class of ligand-gated channel defined by P2X receptor for extracellular ATP. Nature 371:516–5519

    Article  CAS  PubMed  Google Scholar 

  8. King BF, Townsend-Nicholson A, Burnstock G (1998) Metabotropic receptor for ATP and UTP: exploring the correspondence between native and recombinant nucleotide receptors. Trends Pharmacol Sci 19:506–514

    Article  CAS  PubMed  Google Scholar 

  9. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  CAS  PubMed  Google Scholar 

  10. Zimmermann H (1999) Nucleotides and cd39: principal modulatory players in hemostasis and thrombosis. Nat Med 5:987–988

    Article  CAS  PubMed  Google Scholar 

  11. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309

    Article  CAS  PubMed  Google Scholar 

  12. Yegutkin GG, Samburski SS, Jalkanen S (2003) Soluble purine-converting enzymes circulate in human blood and regulate extracellular ATP level via counteracting pyrophosphatase and phosphotransfer reactions. FASEB J 17:1328–1330

    CAS  PubMed  Google Scholar 

  13. Oses JP, Cardoso CM, Germano RA, Kirst IB, Rucker B, Furstenau CR, Wink MR, Bonan CD, Battastini AMO, Sarkis JJF (2004) Soluble NTPDase: an additional system of nucleotide hydrolysis in rat blood serum. Life Sci 74:3275–3284

    Article  PubMed  Google Scholar 

  14. Stefan C, Jansen S, Bollen M (2006) Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic Signal 2:361–370

    Article  CAS  PubMed  Google Scholar 

  15. Stefan C, Jansen S, Bollen M (2005) NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 30:542–550

    Article  CAS  PubMed  Google Scholar 

  16. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  CAS  PubMed  Google Scholar 

  17. Coade SB, Pearson JD (1989) Metabolism of adenine nucleotides in human blood. Circ Res 65:531–537

    CAS  PubMed  Google Scholar 

  18. Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C (2000) Nucleotide pyrophosphatase/phosphodiesterase on the move. Crit Rev Biochem Mol Biol 35:393–432

    Article  CAS  PubMed  Google Scholar 

  19. Vollmayer P, Chair T, Goding JW, Sano K, Servos J, Zimmermann H (2003) Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatase/phosphodiesterases. Eur J Biochem 270:2971–2978

    Article  CAS  PubMed  Google Scholar 

  20. Gijsbers R, Ceulemans H, Stalmans W, Bollen M (2001) Structural and catalytic similarities between nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase. J Biol Chem 276:1361–1368

    Article  CAS  PubMed  Google Scholar 

  21. Lavrnja I, Bjelobaba I, Stojiljkovic M, Pekovic S, Mostarica-Stojkovic M, Stosic-Grujicic S, Nedeljkovic N (2009) Time-course changes in ectonucleotidase activities during experimental autoimmune encephalomyelitis. Neurochem Int 55:193–198

    Article  CAS  PubMed  Google Scholar 

  22. Markwell MA, Haas SA, Lieber L, Tolbert NA (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  CAS  PubMed  Google Scholar 

  23. Voelter W, Zech K, Arnold P, Ludwig G (1980) Determination of selected pyrimidines, purines and their metabolites in serum and urine by reversed-phase ion-pair chromatography. J Chromatogr 199:345–354

    Article  CAS  PubMed  Google Scholar 

  24. Sakura H, Nagashima S, Nakahima A, Maeda M (1998) Characterization of fetal serum 5′-nucleotide phosphodiesterase: a novel function as a platelet aggregation inhibitor in fetal circulation. Thromb Res 91:83–89

    Article  CAS  PubMed  Google Scholar 

  25. Hosoda N, Hoshino S, Kanda Y, Katada T (1999) Inhibition of phosphodiesterase/pyrophosphatase activity of PC-1 by its association with glycosaminoglycans. Eur J Biochem 265:763–770

    Article  CAS  PubMed  Google Scholar 

  26. Frittitta L, Camastra S, Baratta R, Costanzo BV, D’Adamo M, Graci S, Spampinato D, Maddux BA, Vigneri R, Ferrannini E, Trischitta V (1999) A soluble PC-1 circulates in human plasma: relationship with insulin resistance and associated abnormalities. J Clin Endocrinol Metab 84:3620–3625

    Article  CAS  PubMed  Google Scholar 

  27. Furstenau CR, Trentin DS, Gossenheimer AN, Ramos DB, Casali EA, Barreto-Chaves MLM, Sarkis JJF (2008) Ectonucleotidase activities are altered in serum and platelets of L-NAME-treated rats. Blood Cells Mol Dis 41:223–229

    Article  PubMed  Google Scholar 

  28. Bruno AN, Oses JP, Amaral O, Coitinho A, Bonan CD, Battastini AMO, Sarkis JJF (2003) Changes in nucleotide hydrolysis in rat blood serum induced by pentylenetetrazol-kindling. Mol Brain Res 114:140–145

    Article  PubMed  Google Scholar 

  29. Grobben B, Roymans AD, Stefan C, Bollen M, Esmans EL, Slegers H (1999) An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma. J Neurochem 72:826–834

    Article  CAS  PubMed  Google Scholar 

  30. Colman RW (1990) Aggregin: a platelet ADP receptor that mediates activation. FASEB J 4:1425–1435

    CAS  PubMed  Google Scholar 

  31. Burnstock G (1990) Purinergic mechanisms. Ann N Y Acad Sci USA 603:1–17

    Article  CAS  Google Scholar 

  32. Burnstock G, Fisher B, Hoyle CHV, Maillard M, Ziganshin AU, Brizzolara AL, Von Isakkovics A, Boyer JL, Kendall Harden T, Jacobson KA (1994) Structure-activity relationships for derivates of adenosine 5′-triphosphate as agonists of P2-purinoreceptors: heterogeneity within P2x and P2y subtypes. Drug Dev Res 31:206–219

    Article  Google Scholar 

  33. Picher M, Sevigny J, D’Orléans-Juste P, Beaudoin AR (1996) Hydrolysis of P2-purinoreceptor agonists by a purified ectonucleotidase from the bovine aorta, the ATP-diphosphohydrolyase. Biochem Pharmacol 51:1453–1460

    Article  CAS  PubMed  Google Scholar 

  34. Gendaszewska-Darmach E, Maszewska M, Zaklos M, Koziolkiewicz M (2003) Degradation of extracellular nucleotides and their analogs in HeLa and HUVEC cell cultures. Acta Biochim Pol 50:973–984

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by Serbian Ministry of Science and technology project No. E143005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezda Nedeljkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laketa, D., Bjelobaba, I., Savic, J. et al. Biochemical characterization of soluble nucleotide pyrophosphatase/phosphodiesterase activity in rat serum. Mol Cell Biochem 339, 99–106 (2010). https://doi.org/10.1007/s11010-009-0373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0373-1

Keywords

Navigation