Skip to main content
Log in

The effects of MAPK inhibitors on antimycin A-treated Calu-6 lung cancer cells in relation to cell growth, reactive oxygen species, and glutathione

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Antimycin A (AMA) inhibits succinate oxidase, NADH oxidase, and mitochondrial electron transport chain between cytochrome b and c. We recently demonstrated that AMA inhibited the growth of Calu-6 lung cancer cells through apoptosis. Here, we investigated the effects of AMA and/or MAPK inhibitors on Calu-6 lung cancer cells in relation to cell growth, cell death, reactive oxygen species (ROS), and GSH levels. Treatment with AMA inhibited the growth of Calu-6 cells at 72 h. AMA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). While ROS were decreased in AMA-treated Calu-6 cells, O •−2 among ROS was increased. AMA also induced GSH depletion in Calu-6 cells. Treatment with MEK inhibitor intensified cell death, MMP (ΔΨm) loss, and GSH depletion in AMA-treated Calu-6 cells. JNK inhibitor also increased cell death, MMP (ΔΨm) loss, and ROS levels in these cells. Treatment with p38 inhibitor magnified cell growth inhibition by AMA and increased cell death, MMP (ΔΨm) loss, ROS level, and GSH depletion in AMA-treated cells. Conclusively, all the MAPK inhibitors slightly intensified cell death in AMA-treated Calu-6 cells. The changes of ROS and GSH by AMA and/or MAPK inhibitors were in part involved in cell growth and death in Calu-6 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMA:

Antimycin A

ROS:

Reactive oxygen species

MAPK:

Mitogen-activated protein kinase

MEK:

MAP kinase or ERK kinase

ERK:

Extracellular signal-regulated kinase

JNK:

c-Jun N-terminal kinase

SOD:

Superoxide dismutase

MMP (ΔΨm):

Mitochondrial membrane potential

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

H2DCFDA:

2′7′-dichlorodihydrofluorescein diacetate

DHE:

Dihydroethidium

GSH:

Glutathione

CMFDA:

5-Chloromethylfluorescein diacetate

MTT:

3-(45-Dimethylthiazol-2-yl)-25-diphenyltetrazolium bromide

PI:

Propidium iodide

References

  1. Nakayama K, Okamoto F, Harada Y (1956) Antimycin A: isolation from a new streptomyces and activity against rice plant blast fungi. J Antibiot (Tokyo) 9:63–66

    CAS  Google Scholar 

  2. Maguire JJ, Kagan VE, Packer L (1992) Electron transport between cytochrome c and alpha tocopherol. Biochem Biophys Res Commun 188:190–197

    Article  CAS  PubMed  Google Scholar 

  3. Alexandre A, Lehninger AL (1984) Bypasses of the antimycin a block of mitochondrial electron transport in relation to ubisemiquinone function. Biochim Biophys Acta 767:120–129

    Article  CAS  PubMed  Google Scholar 

  4. Pham NA, Robinson BH, Hedley DW (2000) Simultaneous detection of mitochondrial respiratory chain activity and reactive oxygen in digitonin-permeabilized cells using flow cytometry. Cytometry 41:245–251

    Article  CAS  PubMed  Google Scholar 

  5. Campo ML, Kinnally KW, Tedeschi H (1992) The effect of antimycin A on mouse liver inner mitochondrial membrane channel activity. J Biol Chem 267:8123–8127

    CAS  PubMed  Google Scholar 

  6. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  7. Panduri V, Weitzman SA, Chandel NS, Kamp DW (2004) Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol 286:L1220–L1227

    Article  CAS  PubMed  Google Scholar 

  8. Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F (2001) The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem 276:12030–12034

    Article  CAS  PubMed  Google Scholar 

  9. Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751

    Article  CAS  PubMed  Google Scholar 

  10. Pastorino JG, Tafani M, Rothman RJ, Marcinkeviciute A, Hoek JB, Farber JL (1999) Functional consequences of the sustained or transient activation by bax of the mitochondrial permeability transition pore. J Biol Chem 274:31734–31739

    Article  CAS  PubMed  Google Scholar 

  11. Han YH, Kim SH, Kim SZ, Park WH (2008) Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncol Rep 20:689–693

    CAS  PubMed  Google Scholar 

  12. Han YW, Kim SZ, Kim SH, Park WH (2007) The changes of intracellular H2O2 are an important factor maintaining mitochondria membrane potential of antimycin A-treated As4.1 juxtaglomerular cells. Biochem Pharmacol 73:863–872

    Article  CAS  PubMed  Google Scholar 

  13. King MA (2005) Antimycin A-induced killing of HL-60 cells: apoptosis initiated from within mitochondria does not necessarily proceed via caspase 9. Cytometry A 63:69–76

    PubMed  Google Scholar 

  14. Park WH, Han YW, Kim SW, Kim SH, Cho KW, Kim SZ (2007) Antimycin A induces apoptosis in As4.1 juxtaglomerular cells. Cancer Lett 251:68–77

    Article  CAS  PubMed  Google Scholar 

  15. Han YH, Park WH (2009) Growth inhibition in antimycin A treated-lung cancer Calu-6 cells via inducing a G1 phase arrest and apoptosis. Lung Cancer 65(2):150–160

    Google Scholar 

  16. Han YH, Park WH (2009) Tiron, a ROS scavenger, protects human lung cancer Calu-6 cells against antimycin A-induced cell death. Oncol Rep 21:253–261

    CAS  PubMed  Google Scholar 

  17. Park WH, Han YW, Kim SH, Kim SZ (2007) An ROS generator, antimycin A, inhibits the growth of HeLa cells via apoptosis. J Cell Biochem 102:98–109

    Article  CAS  PubMed  Google Scholar 

  18. Genestra M (2007) Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 19:1807–1819

    Article  CAS  PubMed  Google Scholar 

  19. Blenis J (1993) Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci U S A 90:5889–5892

    Article  CAS  PubMed  Google Scholar 

  20. Kusuhara M, Takahashi E, Peterson TE, Abe J, Ishida M, Han J, Ulevitch R, Berk BC (1998) p38 Kinase is a negative regulator of angiotensin II signal transduction in vascular smooth muscle cells: effects on Na+/H+ exchange and ERK1/2. Circ Res 83:824–831

    CAS  PubMed  Google Scholar 

  21. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139

    Article  CAS  PubMed  Google Scholar 

  22. Mao X, Yu CR, Li WH, Li WX (2008) Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells. Cell Res 18:879–888

    Article  CAS  PubMed  Google Scholar 

  23. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138–4142

    Article  CAS  PubMed  Google Scholar 

  24. Rygiel TP, Mertens AE, Strumane K, van der Kammen R, Collard JG (2008) The Rac activator Tiam1 prevents keratinocyte apoptosis by controlling ROS-mediated ERK phosphorylation. J Cell Sci 121:1183–1192

    Article  CAS  PubMed  Google Scholar 

  25. Henson ES, Gibson SB (2006) Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy. Cell Signal 18:2089–2097

    Article  CAS  PubMed  Google Scholar 

  26. Petty RD, Nicolson MC, Kerr KM, Collie-Duguid E, Murray GI (2004) Gene expression profiling in non-small cell lung cancer: from molecular mechanisms to clinical application. Clin Cancer Res 10:3237–3248

    Article  CAS  PubMed  Google Scholar 

  27. Park WH, Seol JG, Kim ES, Hyun JM, Jung CW, Lee CC, Kim BK, Lee YY (2000) Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res 60:3065–3071

    CAS  PubMed  Google Scholar 

  28. Han YH, Kim SZ, Kim SH, Park WH (2008) Arsenic trioxide inhibits the growth of Calu-6 cells via inducing a G2 arrest of the cell cycle and apoptosis accompanied with the depletion of GSH. Cancer Lett 270(1):40–55

    Google Scholar 

  29. Han YH, Kim SZ, Kim SH, Park WH (2008) Apoptosis in pyrogallol-treated Calu-6 cells is correlated with the changes of intracellular GSH levels rather than ROS levels. Lung Cancer 59:301–314

    Article  PubMed  Google Scholar 

  30. Han YH, Kim SZ, Kim SH, Park WH (2007) Arsenic trioxide inhibits growth of As4.1 juxtaglomerular cells via cell cycle arrest and caspase-independent apoptosis. Am J Physiol Renal Physiol 293:F511–F520

    Article  CAS  PubMed  Google Scholar 

  31. Han YH, Kim SH, Kim SZ, Park WH (2008) Caspase inhibitor decreases apoptosis in pyrogallol-treated lung cancer Calu-6 cells via the prevention of GSH depletion. Int J Oncol 33:1099–1105

    CAS  PubMed  Google Scholar 

  32. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  33. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181

    Article  CAS  PubMed  Google Scholar 

  34. Park WH, Han YW, Kim SH, Kim SZ (2007) A superoxide anion generator, pyrogallol induces apoptosis in As4.1 cells through the depletion of intracellular GSH content. Mutat Res 619:81–92

    CAS  PubMed  Google Scholar 

  35. Gomez-Lazaro M, Galindo MF, Melero-Fernandez de Mera RM, Fernandez-Gomez FJ, Concannon CG, Segura MF, Comella JX, Prehn JH, Jordan J (2007) Reactive oxygen species and p38 mitogen-activated protein kinase activate bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate. Mol Pharmacol 71:736–743

    Article  CAS  PubMed  Google Scholar 

  36. Li C, Wright MM, Jackson RM (2002) Reactive species mediated injury of human lung epithelial cells after hypoxia-reoxygenation. Exp Lung Res 28:373–389

    Article  PubMed  Google Scholar 

  37. Ling YH, Liebes L, Zou Y, Perez-Soler R (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 278:33714–33723

    Article  CAS  PubMed  Google Scholar 

  38. Qiu JH, Asai A, Chi S, Saito N, Hamada H, Kirino T (2000) Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured cortical neurons. J Neurosci 20:259–265

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A084194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y.H., Park, W.H. The effects of MAPK inhibitors on antimycin A-treated Calu-6 lung cancer cells in relation to cell growth, reactive oxygen species, and glutathione. Mol Cell Biochem 333, 211–219 (2010). https://doi.org/10.1007/s11010-009-0222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0222-2

Keywords

Navigation