Skip to main content
Log in

Cell swelling, impulse conduction, and cardiac arrhythmias in the failing heart. Opposite effects of angiotensin II and angiotensin (1–7) on cell volume regulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The influence of hypotonic solution on cell volume and electrophysiology properties of the failing heart of cardiomyopathic hamsters (TO-2) was investigated. The results showed an increase in cell volume of quiescent isolated ventricular myocytes by 66% within 30 min. Angiotensin (1–7) [Ang (1–7)] (10−8 M) administered to isotonic solution, elicited a gradual decline in cell volume and a significant decrease of the swelling-activated chloride current (I Clswell). The effect of Ang (1–7) on cell volume was inhibited by ouabain (10−7 M). Angiotensin II (10−8 M) caused cell swelling and increased I Clswell. Experiments performed on isolated left ventricles of cardiomyopathic hamsters at an advanced stage of the disease, indicated that hypotonic solution prepared by diluting the normal Krebs solution by 25%, showed a gradual decrease of conduction velocity, generation of early after depolarizations and block of impulse conduction within 10 min. Implications to myocardial ischemia are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tranun-Jensen J, Janse MJ, Fiolet WT, Krieger WJ et al (1981) Tissue osmolarity, cell swelling and reperfusion in acute regional myocardial ischemia in the isolated porcine heart. Circ Res 49:364–381

    Google Scholar 

  2. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  PubMed  Google Scholar 

  3. Baumgarten CM, Clemo HF (2003) Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol 122:689–702

    Google Scholar 

  4. Nilius B, Vianna F, Droogmans G (1997) Ionic channels in vascular endothelium. Annu Rev Physiol 59:145–170. doi:10.1146/annurev.physiol.59.1.145

    Article  CAS  PubMed  Google Scholar 

  5. Powell T, Twist T (1976) A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem Biophys Res Commun 72:327–333. doi:10.1016/0006-291X(76)90997-9

    Article  CAS  PubMed  Google Scholar 

  6. Tanigushi Y, Kokubun S, Noma A, Irisawa H (1981) Spontaneously active cells isolated from the sinoatrial and atrioventricular node of the rabbit heart. Jpn J Physiol 31:547–558

    Google Scholar 

  7. Boyett MR, Frampton JE, Kirby MS (1991) The length, width and volume of isolated rat and ferret ventricular myocytes during twitch contractions and changes in osmotic strength. Exp Physiol 76:259–270

    CAS  PubMed  Google Scholar 

  8. Sorenson AL, Tepper D, Sonnenblick EH, Robinson TF, Capasso JM (1985) Size and shape of enzymatically isolated ventricular myocytes from rats and cardiomyopathic hamsters. Cardiovasc Res 19:793–799. doi:10.1093/cvr/19.12.793

    Article  CAS  PubMed  Google Scholar 

  9. Ferreira AJ, Santos RA, Almeida AP (2001) Angiotensin-(1–7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 38:665–668

    CAS  PubMed  Google Scholar 

  10. De Mello WC (2001) Angiotensin (1–7) re-establishes impulse conduction in cardiac muscle during ischaemia-reperfusion. The role of the sodium pump. J Renin Angiotensin Aldosterone Syst 5:203–208. doi:10.3317/jraas.2004.041

    Article  Google Scholar 

  11. De Mello WC (2008) Intracellular and extracellular renin have opposite effects on the regulation of heart cell volume. Implications for myocardial ischaemia. J Renin Angiotensin Aldosterone Syst 5:203–208. doi:10.3317/jraas.2004.041

    Article  Google Scholar 

  12. Verkerk AO, Wilders R, Ravesloot JH (2004) Identification of swelling-activated chloride current in rabbit cardiac Purkinje cells. Cell Mol Life Sci 61:1106–1113. doi:10.1007/s00018-004-4028-9

    Article  CAS  PubMed  Google Scholar 

  13. Cordeiro JM, Spitzer KW, Giles WR (1998) Repolarizing K currents in rabbit Purkinje cells and ventricular cells. J Physiol 503:811–823. doi:10.1111/j.1469-7793.1998.811bp.x

    Article  Google Scholar 

  14. Hume JR, Duan D, Collier ML, Yamazaki I, Horowitz B (2000) Anion transport in heart. Physiol Rev 80:31–81

    CAS  PubMed  Google Scholar 

  15. Zaza A, Rochetti M, Piazza S, Amato A, Cavalieri B (1998) Swelling-induced current in rabbit sinoatrial myocytes; role in modulating pacemaker. Pflugers Arch 436:R16. doi:10.1007/s004240050599

    Article  Google Scholar 

  16. Vandenberg JI, Bett GC, Powell T (1997) Contribution of swelling-activated chloride current to changes in the cardiac action potential. Am J Physiol 273:541–547

    Google Scholar 

  17. Du XY, Sarota S (1997) Cardiac swelling-induced chloride current depolarizes canine atrial myocytes. Am J Physiol 272:H1004–H1916

    Google Scholar 

  18. Duan DY, Liu LL, Bozeat N, Huang ZM, Xiang SY et al (2005) Functional role of anion channel in cardiac diseases. Acta Pharmacol Sin 26:265–278

    Article  CAS  PubMed  Google Scholar 

  19. Sarota S (1992) Swelling-induced chloride-sensitive current in canine atrial cells revealed by the whole cell patch clamp. Circ Res 70:679–687

    Google Scholar 

  20. Zygmund AC, Gibbons WR (1991) Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 68:424–437

    Google Scholar 

  21. Ngezahayo A, Kolb HA (1990) Gap junction permeability is affected by cell volume changes and modulates volume regulation. FEBS Lett 276:6–8. doi:10.1016/0014-5793(90)80493-3

    Article  CAS  PubMed  Google Scholar 

  22. Sackin H (1995) Stretch-activated ion channels. Kidney Int 48:1134–1147. doi:10.1038/ki.1995.397

    Article  CAS  PubMed  Google Scholar 

  23. Schaper J, Froede R, Hein S, Buck A et al (1991) Impairment of myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83:504–514

    CAS  PubMed  Google Scholar 

  24. Richter EA, Cleland PJ, Rattigan S, Clark MG (1987) Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett 217:232–236. doi:10.1016/0014-5793(87)80669-5

    Article  CAS  PubMed  Google Scholar 

  25. De Mello WC (1998) Intracellular angiotensin II regulates the inward calcium current in cardiac myocytes. Hypertension 32(6):976–982

    PubMed  Google Scholar 

  26. Zou Y, Akazawa H, Qin Y, Sano M, Takano M, Minamino T et al (2004) Mechanical stress activates angiotensin II AT1 receptor without involvement of angiotensin II. Nat Cell Biol 6:499–506. doi:10.1038/ncb1137

    Article  CAS  PubMed  Google Scholar 

  27. Clemo HF, Stambler BS, Baumgarten CM (1999) Swelling-activated chloride current is persistently activated in ventricular myocytes from dogs with tachycardia-induced congestive heart failure. Circ Res 84:157–165

    CAS  PubMed  Google Scholar 

  28. Browe DM, Baumgarten CM (2004) Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl current elicited by b1 integrin stretch in rabbit ventricular myocytes. J Gen Physiol 124:273–287. doi:10.1085/jgp.200409040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grant HL-34148 from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walmor C. De Mello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Mello, W.C. Cell swelling, impulse conduction, and cardiac arrhythmias in the failing heart. Opposite effects of angiotensin II and angiotensin (1–7) on cell volume regulation. Mol Cell Biochem 330, 211–217 (2009). https://doi.org/10.1007/s11010-009-0135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0135-0

Keywords

Navigation