Skip to main content
Log in

Involvement of ERK and AKT signaling in the growth effect of arginine vasopressin on adult rat cardiac fibroblast and the modulation by simvastatin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Arginine vasopressin (AVP) has been shown to directly induce neonatal rat cardiac fibroblasts (CFs) proliferation, a major component involved in cardiac hypertrophy. Herein, we explored whether AVP is also a growth factor for adult rat CFs and, if so, whether the growth effect could be inhibited by simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor. AVP significantly increased DNA synthesis in adult rat CFs by 73.5 ± 5.1% (P ≤ 0.05), an effect inhibited by V1 receptor antagonist, d(CH2)5[Tyr2(Me), Arg8]-vasopressin. AVP also activated extracellular signal-regulated kinase 1/2 (ERK1/2) as assessed by MBP phosphotransferase activity (5.1 ± 0.6 fold over basal level, P ≤ 0.05) and Western blot analysis, and effects were mimicked by protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), but abolished by inhibiting cellular PKC through chronic PMA incubation. In addition, AVP induced PKC activation (27.2 ± 3.8% from a basal value of 9.3 ± 0.7%, P ≤ 0.05). AVP-induced increase in DNA synthesis could be attenuated by the specific inhibitors of ERK1/2 (PD98059), PI3K (LY294002), and AKT (1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, HIMO). Simvastatin inhibited the effects of AVP on DNA synthesis, ERK1/2, and PKC activation in a dose-dependent manner. Phosphatidylinositol-3-kinase (PI3K)-dependent AKT activation induced by AVP was also inhibited by simvastatin. The effects of simvastatin on ERK1/2, PKC, and AKT activation and DNA synthesis could be reversed by mevalonate. These results support a growth-inducing effect of AVP on adult rat CFs through ERK and AKT signalings and the growth effect could be attenuated by simvastatin via inhibiting these two pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582. doi:10.1016/S0735-1097(99)00630-0

    Article  PubMed  CAS  Google Scholar 

  2. Weber KT, Brilla CG, Janicki JS (1993) Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res 27:341–348. doi:10.1093/cvr/27.3.341

    Article  PubMed  CAS  Google Scholar 

  3. Yang F, Liu YH, Yang XP et al (2002) Myocardial infarction and cardiac remodelling in mice. Exp Physiol 87:547–555. doi:10.1113/eph8702385

    Article  PubMed  CAS  Google Scholar 

  4. Naitoh M, Suzuki H, Murakami M et al (1994) Effects of oral AVP receptor antagonists OPC-21268 and OPC-31260 on congestive heart failure in conscious dogs. Am J Physiol 267:H2245–H2254

    PubMed  CAS  Google Scholar 

  5. Uretsky BF, Verbalis JG, Generalovich T et al (1985) Plasma vasopressin response to osmotic and hemodynamic stimuli in heart failure. Am J Physiol 248:H396–H402

    PubMed  CAS  Google Scholar 

  6. Kawano Y, Matsuoka H, Nishikimi T et al (1997) The role of vasopressin in essential hypertension. Plasma levels and effects of the V1 receptor antagonist OPC-21268 during different dietary sodium intakes. Am J Hypertens 10:1240–1244. doi:10.1016/S0895-7061(97)00269-0

    Article  PubMed  CAS  Google Scholar 

  7. Chatterjee K (2005) Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol 95:8B–13B. doi:10.1016/j.amjcard.2005.03.003

    Article  PubMed  CAS  Google Scholar 

  8. Nakamura Y, Haneda T, Osaki J et al (2000) Hypertrophic growth of cultured neonatal rat heart cells mediated by vasopressin V(1A) receptor. Eur J Pharmacol 391:39–48. doi:10.1016/S0014-2999(99)00775-X

    Article  PubMed  CAS  Google Scholar 

  9. Fukuzawa J, Haneda T, Kikuchi K (1999) Arginine vasopressin increases the rate of protein synthesis in isolated perfused adult rat heart via the V1 receptor. Mol Cell Biochem 195:93–98. doi:10.1023/A:1006980517557

    Article  PubMed  CAS  Google Scholar 

  10. Tahara A, Tomura Y, Wada K et al (1998) Effect of YM087, a potent nonpeptide vasopressin antagonist, on vasopressin-induced protein synthesis in neonatal rat cardiomyocyte. Cardiovasc Res 38:198–205. doi:10.1016/S0008-6363(97)00324-6

    Article  PubMed  CAS  Google Scholar 

  11. Lee TM, Lin MS, Chou TF et al (2005) Effect of simvastatin on left ventricular mass in hypercholesterolemic rabbits. Am J Physiol Heart Circ Physiol 288:H1352–H1358. doi:10.1152/ajpheart.00527.2003

    Article  PubMed  CAS  Google Scholar 

  12. Luo JD, Zhang WW, Zhang GP et al (1999) Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol 26:903–908. doi:10.1046/j.1440-1681.1999.03165.x

    Article  PubMed  CAS  Google Scholar 

  13. Loch D, Levick S, Hoey A et al (2006) Rosuvastatin attenuates hypertension-induced cardiovascular remodeling without affecting blood pressure in DOCA-salt hypertensive rats. J Cardiovasc Pharmacol 47:396–404

    PubMed  CAS  Google Scholar 

  14. Dechend R, Fiebeler A, Park JK et al (2001) Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Circulation 104:576–581. doi:10.1161/hc3001.092039

    Article  PubMed  CAS  Google Scholar 

  15. Tian JW, Zhao LY, Wang SW et al (2003) Effects of atorvastatin on the proliferation and collagen synthesis of rat cardiac fibroblasts. Zhonghua Yi Xue Za Zhi 83:118–122

    Google Scholar 

  16. Moiseeva OM, Semyonova EG, Polevaya EV et al (2007) Effect of pravastatin on phenotypical transformation of fibroblasts and hypertrophy of cardiomyocytes in culture. Bull Exp Biol Med 143:54–57. doi:10.1007/s10517-007-0015-0

    Article  PubMed  CAS  Google Scholar 

  17. Yang XD, Zhao LY, Zheng QS et al (2003) Effects of arginine vasopressin on growth of rat cardiac fibroblasts: role of V1 receptor. J Cardiovasc Pharmacol 42:132–135. doi:10.1097/00005344-200307000-00020

    Article  PubMed  CAS  Google Scholar 

  18. Lazou A, Bogoyevitch MA, Clerk A et al (1994) Regulation of mitogen-activated protein kinase cascade in adult rat heart preparations in vitro. Circ Res 75:932–941

    PubMed  CAS  Google Scholar 

  19. Chiu T, Wu SS, Santiskulvong C et al (2002) Vasopressin-mediated mitogenic signaling in intestinal epithelial cells. Am J Physiol Cell Physiol 282:C434–C450

    PubMed  CAS  Google Scholar 

  20. Chen D, Fong HW, Davis JS (2001) Induction of c-fos and c-jun messenger ribonucleic acid expression by prostaglandin F2{{alpha}} is mediated by a protein kinase C-dependent extracellular signal-regulated kinase mitogen-activated protein kinase pathway in bovine luteal cells. Endocrinology 142:887–895. doi:10.1210/en.142.2.887

    Article  PubMed  CAS  Google Scholar 

  21. Tahara A, Tsukada J, Tomura Y et al (2007) Effect of YM218, a nonpeptide vasopressin V(1A) receptor-selective antagonist, on rat mesangial cell hyperplasia and hypertrophy. Vascul Pharmacol 46:463–469. doi:10.1016/j.vph.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  22. Bhora FY, Kothary PC, Imanishi H et al (1994) Vasopressin stimulates DNA synthesis in cultured rat hepatocytes. J Surg Res 57:706–710. doi:10.1006/jsre.1994.1205

    Article  PubMed  CAS  Google Scholar 

  23. Lagumdzija A, Pernow Y, Bucht E et al (2005) The effects of arg-vasopressin on osteoblast-like cells in endothelial nitric oxide synthase-knockout mice and their wild type counterparts. Peptides 26:1661–1666. doi:10.1016/j.peptides.2005.02.007

    Article  PubMed  CAS  Google Scholar 

  24. Xu YJ, Ouk Kim S, Liao DF et al (2000) Stimulation of 90- and 70-kDa ribosomal protein S6 kinases by arginine vasopressin and lysophosphatidic acid in rat cardiomyocytes. Biochem Pharmacol 59:1163–1171. doi:10.1016/S0006-2952(00)00239-2

    Article  PubMed  CAS  Google Scholar 

  25. Aharonovitz O, Aboulafia-Etzion S, Leor J et al (1998) Stimulation of 42/44 kDa mitogen-activated protein kinases by arginine vasopressin in rat cardiomyocytes. Biochim Biophys Acta (BBA) Mol Cell Res 1401:105–111

    Article  Google Scholar 

  26. Daub H, Wallasch C, Lankenau A et al (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J 16:7032–7044. doi:10.1093/emboj/16.23.7032

    Article  PubMed  CAS  Google Scholar 

  27. Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744. doi:10.1126/science.286.5445.1741

    Article  PubMed  CAS  Google Scholar 

  28. Cross DA, Alessi DR, Vandenheede JR et al (1994) The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J 303(Pt 1):21–26

    PubMed  CAS  Google Scholar 

  29. Rommel C, Clarke BA, Zimmermann S et al (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286:1738–1741. doi:10.1126/science.286.5445.1738

    Article  PubMed  CAS  Google Scholar 

  30. Ferby IM, Waga I, Hoshino M et al (1996) Wortmannin inhibits mitogen-activated protein kinase activation by platelet-activating factor through a mechanism independent of p85/p110-type phosphatidylinositol 3-kinase. J Biol Chem 271:11684–11688. doi:10.1074/jbc.271.20.11684

    Article  PubMed  CAS  Google Scholar 

  31. Denhardt DT (1996) Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signaling. Biochem J 318(Pt 3):729–747

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shang Fu-jun, Liu Hui and Zhang Li-juan for their valuable and kind technical assistance and helpful suggestions. We also thank Zeng Chun-yu for his careful proofreading on grammatical English of the manuscript and constructive comments on our article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-You Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YP., Zhao, LY., Zheng, QS. et al. Involvement of ERK and AKT signaling in the growth effect of arginine vasopressin on adult rat cardiac fibroblast and the modulation by simvastatin. Mol Cell Biochem 317, 33–41 (2008). https://doi.org/10.1007/s11010-008-9802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9802-9

Keywords

Navigation