Skip to main content
Log in

Alterations in band 3 protein and anion exchange in red blood cells of renal failure patients

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The precise nature of band 3 protein and its involvement in oxalate exchange in the red blood cells (RBCs) of renal failure patients has not been studied in detail. Therefore, here we studied the oxalate exchange and binding by band 3 protein in RBCs of humans with conditions of acute and chronic renal failure (ARF and CRF). The RBCs of ARF and CRF patients exhibited abnormal red cell morphology and an increased resistance to osmotic hemolysis. Further, an increase in the cholesterol content and decrease in the activities of Na+-K+-, Ca2+-, and Mg2+-ATPases of membranes were observed in the RBCs of ARF and CRF patients. A decrease in the oxalate flux was observed in the RBCs of ARF and CRF patients. The oxalate-binding activities of the RBC membranes were significantly lower in ARF (20 pmoles/mg protein) and CRF (5.3 pmoles/mg protein) patients as compared to that in the normal subjects (36 pmoles/mg protein). DEAE-cellulose and Sephadex G-200 column chromatography purification profiles revealed a distinctive shift in oxalate-binding activity of band 3 protein of RBCs of ARF and CRF patients as compared to that of the normal subjects. It was also observed from the binding studies with a fluorescent dye, eosin-5-maleimide, which specifically binds to band 3 protein, that the RBCs of ARF and CRF patients exhibited only 53 and 32% of abundance of band 3 protein, respectively, as compared to that in the RBCs of the normal subjects, thus revealing a decrease in the band 3 protein content in ARF and CRF patients. These results for the first time showed a decrease in the oxalate exchange in RBCs of patients with ARF and CRF, which was also concomitant with the low levels of abundance of band 3 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vince JW, Reithmeier RA: Carbonic anhydrase II binds to the carboxy terminus of human band 3, the erythrocyte Cl--HCO3- exchanger. J Biol Chem 273: 28430–28437, 1998

    Article  CAS  PubMed  Google Scholar 

  2. Tanner MJA: The structure and function of band 3 (AE1): Recent developments (review). Mol Memb Biol 14: 155–165, 1997

    CAS  Google Scholar 

  3. Grooves JD, Tanner MJA: Glycophorin A facilitates the expression of human band 3-mediated anion transport in xenopus oozytes. J Biol Chem 267: 22163–22168, 1992

    PubMed  Google Scholar 

  4. Lepke S, Becker A, Passow H: Mediation of inorganic anion transport by the hydrophobic domain of mouse erythroid band 3 protein expressed in oocytes of Xenopus laevi. Biochim Biophys Acta 1106: 13–16, 1992

    CAS  PubMed  Google Scholar 

  5. Papov M, Tan LY, Li J, Reithmeier RAF: Mapping the ends of transmembrane segments in a polytopic membrane proteins scanning N-glysosylation mutagenesis of extracytosolic loops in the anion exchanger band 3. J Biol Chem 272: 18325–18332, 1997

    Article  PubMed  Google Scholar 

  6. Hanspal M, Golan DE, Smockova Y, Yi SJ, Cho MR, Liu SC, Palek J: Temporal synthesis of band 3 protein that mediates the attachment of erythroblasts. Dimers and tetramers exist in the membrane as performed stable species. Blood 92: 329–338, 1998

    CAS  Google Scholar 

  7. Jennings ML, Smith JS: Anion–proton cotransport through the human red blood cell band 3 protein. Role of glutamate 681. J Biol Chem 62: 98–100, 1992

    Google Scholar 

  8. Alper SL, Darman RB, Chernova MN, Dahl NK: The AE1 gene family of Cl/HCO3- exchangers. J Nephrol 15: 41–53, 2002

    Google Scholar 

  9. Tanner MJA: Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol 30: 34–57, 1993

    CAS  Google Scholar 

  10. Beppu M, Mizertami A, Nagoya M, Kikugawa K: Binding of anti band 3 autoantibody to oxidatively damaged erythrocytes. J Biol Chem 265: 3226–3233, 1990

    CAS  PubMed  Google Scholar 

  11. Alper SL, Natale J, Gluck S, Lodish HF, Brown D: Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci USA 86: 5429–5433, 1989

    CAS  PubMed  Google Scholar 

  12. Jennings ML, Smith JS: Anion-proton cotransport through the human red blood cell band 3 protein. Role of glutamate 681. J Biol Chem 62: 98–100, 1992

    Google Scholar 

  13. Passow H: Molecular aspects of band 3 protein mediated anion transport across the red Blood cell membrane. Rev Physiol Biochem Pharmacol 103: 161–203, 1986

    Google Scholar 

  14. Pawloski JR, Stamler JS: Nitric oxide: Nature‘s thid respiratory gas. Transfusion 42: 1603–1609, 2002

    Article  CAS  PubMed  Google Scholar 

  15. Baggio B, Gambaro G, Borsatti A, Clari G, Moret V: Relation between band 3 red blood cell protein and transmembrane oxalate flux in stone formers. Lancet 2: 223–224, 1986

    PubMed  Google Scholar 

  16. Selvam R, Saradhadevi V: Enhanced oxalate transport in nucleated red blood cells. Eur Urol 33: 124–128, 1998

    Article  CAS  PubMed  Google Scholar 

  17. Selvam R, Kalaiselvi P: Oxalate binding proteins in calcium oxalate nephrolithisis. Urol Res 31: 242–256, 2003

    Article  CAS  PubMed  Google Scholar 

  18. Borsatti A: Calcium oxalate nephrolithiasis: Defective oxalate transport. Kidney Inter 39: 1283–1298, 1991

    CAS  Google Scholar 

  19. Dodge JT, Carolyn M, Donald JH: Preparation and chemical characteristics of haemoglopin free ghosts of human erythrocytes. Arch Biochem Biophys 100: 199–230, 1963

    Article  Google Scholar 

  20. Bonting SL: In: C.A. Bitter and E.E. Willey (eds). Membrane and Ion Transport. Interscience, London, 1970, pp 1–25

    Google Scholar 

  21. Hjerten S, Pan H: Purification and characterisation of two froms of a low affinity calciumion ATPase from erythrocyte membrane. Biochem Biophys Acta 755: 457–466, 1983

    PubMed  Google Scholar 

  22. Ohnishi T: Extraction of actin and myosin like proteins from erythrocyte membrane. J Biochem 52: 307–308, 1962

    CAS  PubMed  Google Scholar 

  23. Folch J, Lees M, Sloane-Stanley GH: A simple method for the purification of total lipids from animal tissues. J Biol Chem 226: 497–509, 1957

    CAS  PubMed  Google Scholar 

  24. Parek AC, Jung DH: Cholesterol determination with ferric acetate and sulphuric acid ferrous sulphate reagent. Anal Chem 42: 1423–1427, 1970

    Article  CAS  Google Scholar 

  25. Rouser G, Fleischer S, Yamamoto A: Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids 5: 494–496, 1970

    PubMed  Google Scholar 

  26. Dacie JV: Hemolytic Anemias: Part I. The Congenetal Anemias. 2nd edn. Grunne and Sratton Inc., New York, 1960, pp 35–42

    Google Scholar 

  27. Lowry OH, Rosenbrough, NJ, Farr, AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    CAS  PubMed  Google Scholar 

  28. Bauer JD, Ackermann PG, Torro G: In: Clinical Laboratory Methods, 8th edn. C.V. Mosby Company, pp 170

  29. Wolosin JM, Ginsburg H, Cabantchik I: Functional characterization of anion transport system isolated from human erythrocyte membranes. J Biol Chem 252: 2417–2427, 1977

    Google Scholar 

  30. Baggio, B, Bordin L, Gambaro G, Piccoli A, Marzaro G, Clari G: Evidence of a link between erythrocyte band 3 phosphorylation and anion transport in patients with ‘idiopathic’calcium oxalate nephrolithiasis. Miner Electrolyte Metab 19: 17–20, 1993

    CAS  PubMed  Google Scholar 

  31. Laxmanan S, Sevam R, Mahle CJ, Menon M: Binding of oxalate to mitochondrial inner membranes of rat and human kidney. J Urol 135: 862–865, 1986

    CAS  PubMed  Google Scholar 

  32. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970

    CAS  PubMed  Google Scholar 

  33. Jennings LK, Brown LK, Dockter M E: Quantitation of protein 3 content of circulating erythrocytes at the single-cell level. Blood 65: 1256–1262, 1985

    CAS  PubMed  Google Scholar 

  34. Gaw A, Cowan RA, Reilly DJO: Chronic renal failure and acute renal failure: An illustrated colour text – Clinical biochemistry. Churchill Livinston Medical division of Pearson, Professional Ltd., Hongkong, 1995, pp 503–545

  35. Aronson, PS: The renal proximal tubule: A model for diversity of anion exchangers and stilbene-sensitive anion transporters. Annu Rev Physiol 51: 419–441, 1989

    Article  CAS  PubMed  Google Scholar 

  36. Subang MC, Stewart-Phillips JL, Pappu AS, Suband R, Gagnon RF: Possible role of mevalonate in the hypercholesterolemia seen in experimental chronic renal failure. Nephron 69: 151–154, 1995

    CAS  PubMed  Google Scholar 

  37. Costaglioia C, Romano L, Sorice P, Di Benedetto A: Anemia and chronic renal failure: The possible role of the oxidative state of glutathione. Nephron 52: 1–14, 1989

    PubMed  Google Scholar 

  38. Zhou X-J and Vaziri ND: Erythropoietin metabolism and pharmacokinetics in experimental nephrosis. Am J Physiol 263: 812–815, 1992

    Google Scholar 

  39. Stakisasitis D, Didziapetriene J, Maciulaitis R, Tschaika M: Possible association between cell membrane band 3 impairment function and renal tubular acidosis (liver diseases, malignancies and adverse drug reactions). Medicina 40: 9–15, 2004

    PubMed  Google Scholar 

  40. Bruce LJ, Pan R, Cope DL, Uchikawa M, Gunn RB, Cherry RJ, Tanner MJA: Altered structure and anion transport properties of band 3 (AE1, SLC4A1) in human red cells lacking glycophorin A. J Biol Chem 279: 2414–2420, 2004

    Article  CAS  PubMed  Google Scholar 

  41. Jarolim P, Rubin HL, Brabee V, Chrobak L, Zolotarev AS, Alper SL, Brugnara C, Wichterle H, Palek J: Mutations of conserved arginines in the membrane domain of erythroid band 3 lead to a decrease in membrane-associated band 3 and to the phenotype of hereditary spherocytosis. Blood 85: 634–640, 1995

    CAS  PubMed  Google Scholar 

  42. Jenkins B, Ghassan K, Alfa, Adhermy D, Bursuax E, Foe C, Scarpa AL, Lux E, Garbarz M, Forget BG, Gallagher PG: Nonsense mutation n the erythrocyte band 3 gene associated with decreased mRNA accumulation in a kindered with dominant hereditary sperocytosis. J Clin Invest 97: 373–380, 1996

    CAS  PubMed  Google Scholar 

  43. Schofield AE, Reardon DM, Tanner MJA: Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells. Nature 355: 836–838, 1992

    Article  CAS  PubMed  Google Scholar 

  44. Gimsa J, Ried C: Do band 3 protein conformational changes mediate shape changes of human erythrocytes? Membr Biol 12: 247–254, 1995

    CAS  Google Scholar 

  45. Cabantchick ZI: Erythrocyte membrane transport. Novartis Found Symp 226: 6–16, 1999

    PubMed  Google Scholar 

  46. Turrini F, Niatana A, Mannuzzu L, Gianpiero P, Arese P: Increased red cell calcium adenosine triphosphatase and altered membrane proteins during Fava bean hemolysis in glucose-6-phosphate dehydrogenase-deficient (Meditteranean variant) individuals. Blood 66: 302–305, 1985

    CAS  PubMed  Google Scholar 

  47. Gambaro G, Marchini F, Piccoli A, Nassuato MA, Bilora F, Baggio B: The abnormal red-cell oxalate transport is a risk factor for idiophathic calcium nephrolithiasis: A prospective study. J Am Soc Nephrol 7: 608–612, 1996

    CAS  PubMed  Google Scholar 

  48. Low PS, Zhang D, Bolin JT: Localization of mutations leading to altered cell shape and anion transport in the crystal structure of the cytoplasmic domain of band 3. Blood Cells 27: 81–84, 2001

    Article  CAS  Google Scholar 

  49. Salamino F, De Tullio R, Mengotti P, Viotti PL, Melloni E, Pontremoli S: Different susceptibility of red cell membrane proteins to calpain degradation. Arch Biochem Biophys 298, 287–292, 1992

    Article  CAS  PubMed  Google Scholar 

  50. Schwarz-Benmier N, Glaser T, Kosower S: Band 3 protein degradation by calpain is enhanced in erythrocytes of old people. Biochem J 275: 47–52, 1991

    PubMed  Google Scholar 

  51. Glaser T, Schwarz-Benmier N, Barnoy S, Barak S, Eshhar Z, Kosower NS: Calpain (Ca2+-dependant thiol protease) in erythrocytes of young and old individuals. Proc Natl Acad Sci USA 91: 7879–7883, 1994

    CAS  PubMed  Google Scholar 

  52. Mandal D, Baudin-Creuza V, Bhattacharyya A, Pathak S, Delaunay J, Kundu M, Basu J: Caspase 3-mediated proteolysis of the N-terminal cytoplasmic domain of the human erythroid anion exchanger 1 (Band 3). J Biol Chem 278: 52551–52558, 2003

    Article  CAS  PubMed  Google Scholar 

  53. King MJ, Smythe JS, Mushens R: Eosin-5-maleimide binding to band 3 and Rh-related proteins forms the basis of a screening test for hereditary sperocytosis. Br J Haematol 124: 106–113, 2004

    CAS  PubMed  Google Scholar 

  54. Liu SC, Palek J, Yi SJ, Nicholas PE, Derick LH, Chiuo SS, Amato D, Corbett JD, Cho MR, Golan DE: Molecular basis of altered red blood cell membrane properties in Southeast Asian Ovalocytosis: Role of the mutant band 3 protein in band 3 oligomerization and reduction by the membrane skeleton. Blood 86: 349–358, 1995

    CAS  PubMed  Google Scholar 

  55. Jennings ML: Oligomeric structure and the anion transport system of human erythrocyte band 3 protein. J Membr Biol 80: 105–117, 1989

    Google Scholar 

  56. Mohammed AD, Ronquist G: Reduction in band 3 protein of red cells in sickle anemia. Ups J Med Sci 96: 23–33, 1991

    PubMed  Google Scholar 

  57. Bruce LJ, Wrong, O, Toye AM, Young MT, Ogle G, Ismail Z, Sinha AK, McMaster P, Hwaihwanje I, Nash GB, Hart S, Lavu E, Palmer R, Othman A, Unwin, RJ, Tanner MJA: Band 3 mutations, renal tubular acidosis and south-east asian ovalocytosis in Malysia and Papua New Guinea: Loss of up to 95% band 3 transport in red cells. Biochem J 350: 41–51, 2000

    CAS  PubMed  Google Scholar 

  58. Kay MM: Band 3 and its alterations in health and disease. Cell Mol Biol 50: 117–138, 2004

    CAS  PubMed  Google Scholar 

  59. Jarolim P, Murray JL, Rubin HL, Taylor WM, Prchal JT, Ballas SK, Snyder LM, Chrobak L, Melrose WD, Brabec V, Palek J: Characterization of 13 novel band 3 gene defects in hereditary spherocytosis with band 3 deficiency. Blood 88: 4366–4374, 1996

    CAS  PubMed  Google Scholar 

  60. Kuma H, Abe Y, Askin D, Bruce LJ, Hamasaki T, Tanner MJA, Hamasaki N: Molecular basis and functional consequences of the dominant effects of the mutant band 3 on the structure of normal band 3 in Southeast Asian Ovalaocytosis. Biochemistry 41: 3311–3320, 2002

    CAS  PubMed  Google Scholar 

  61. Maduell F, Fernandez J, Diez J: Alterations of the Cl-/NaCO3- anion exchanger in erythrocytes of ureamic patients. Nephrol Dial Transplant 5: 1018–1022, 1990

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narasimham Parinandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saradhadevi, V., Sakthivel, R., Vedamoorthy, S. et al. Alterations in band 3 protein and anion exchange in red blood cells of renal failure patients. Mol Cell Biochem 273, 11–24 (2005). https://doi.org/10.1007/s11010-005-5904-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-5904-9

Keywords

Navigation