Skip to main content
Log in

Uniform Preferential Selection Model for Generating Scale-free Networks

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

It has been observed in real networks that the fraction of nodes P(k) with degree k satisfies the power-law P(k) ∝ kγ for k > kmin > 0. However, the degree distribution of nodes in these networks before kmin varies slowly to the extent of being uniform as compared to the degree distribution after kmin. Most of the previous studies focus on the degree distribution after kmin and ignore the initial flatness in the distribution of degrees. In this paper, we propose a model that describes the degree distribution for the whole range of k > 0, i.e., before and after kmin. The network evolution is made up of two steps. In the first step, a new node is connected to the network through a preferential attachment method. In the second step, a certain number of edges between the existing nodes are added such that the end nodes of an edge are selected either uniformly or preferentially. The model has a parameter to control the uniform or preferential selection of nodes for creating edges in the network. We perform a comprehensive mathematical analysis of our proposed model in the discrete domain and prove that the model exhibits an asymptotically power-law degree distribution after kmin and a flat-ish distribution before kmin. We also develop an algorithm that guides us in determining the model parameters in order to fit the model output to the node degree distribution of a given real network. Our simulation results show that the degree distributions of the graphs generated by this model match well with those of the real-world graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn YY, Han S, Kwak H, Moon S, Jeong H (2007) Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th international conference on world wide web, pp 835–844

  • Albert R, Barabási AL (2000) Topology of evolving networks: local events and universality. Phys Rev Lett 85:5234–5237

    Article  Google Scholar 

  • Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. Proc Nat Acad Sci 97(21):11149–11152

    Article  Google Scholar 

  • Anwar R, Yousuf MI, Abid M (2020) Analysis of a model for generating weakly scale-free networks. Discret Math Theoret Comput Sci 22(1):6

    MathSciNet  MATH  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  MathSciNet  Google Scholar 

  • Berger N, Borgs C, Chayes J, D’Souza R, Kleinberg R (2004) Competition-induced preferential attachment. In: International conference on automata, languages and programming

  • Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J (2000) Graph structure in the web. Comput Netw Int J Comput Telecommun Netw 33:309–320

    Google Scholar 

  • Chen Y, Ding C, Hu J, Chen R, Hui P, Fu X (2017) Building and analyzing a global co-authorship network using google scholar data. In: Proceedings of 26th international world wide web conference

  • Collevecchio A, Cotar C, LiCalzi M (2013) On a preferential attachment and generalized pólya’s urn model. Annals Appl Probab 23(3):1219–1253

    Article  MathSciNet  Google Scholar 

  • Cooper C, Frieze A (2003) A general model of web graphs. Random Struct Algor 22(3):311–335

    Article  MathSciNet  Google Scholar 

  • Deijfen M, Esker H, Hofstad R, Hooghiemstra G (2009) A preferential attachment model with random initial degrees. Arkiv fö,r Matematik 47:41–72

    Article  MathSciNet  Google Scholar 

  • Dorogovtsev S, Mendes JF, N Samukhin A (2000) Structure of growing networks with preferential linking. Phys Rev Lett 85:4633–4636

    Article  Google Scholar 

  • Golder S, Wilkinson D, Huberman B (2006) Rhythms of social interaction: messaging within a massive online network. In: Proceedings of the 3rd international conference on communities and technologies

  • H Strogatz S (2001) Exploring complex networks. Nat Int J Sci 410:268–276

    MATH  Google Scholar 

  • KONECT (2017) The Koblenz Network Collection - KONECT. http://konect.uni-koblenz.de/networks/

  • Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629–4632

    Article  Google Scholar 

  • Kumar R, Novak J, Tomkins A (2006) Structure and evolution of online social networks. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 611–617

  • Lansky P, Polito F, Sacerdote L (2014) The role of detachment of in-links in scale-free networks. J Phys A Math Theoret 47(34):345002

    Article  Google Scholar 

  • Lansky P, Polito F, Sacerdote L (2016) Generalized nonlinear yule models. J Stat Phys 165(3):661–679

    Article  MathSciNet  Google Scholar 

  • Leskovec J, Krevl A (2014) SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data

  • Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007) Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM conference on internet measurement, pp 29–42

  • Newman MEJ (2001) The structure of scientific collaboration networks. Proc Nat Acad Sci 98(2):404–409

    Article  MathSciNet  Google Scholar 

  • Ostroumova L, Ryabchenko A, Samosvat E (2013) Generalized preferential attachment: tunable power-law degree distribution and clustering coefficient. In: Algorithms and models for the web graph, pp 185–202

  • Pachón A, Polito F, Sacerdote L (2016) Random graphs associated to some discrete and continuous time preferential attachment models. J Stat Phys 162:1608–1638

    Article  MathSciNet  Google Scholar 

  • Pachón A, Sacerdote L, Yang S (2017) Scale-free behavior of networks with the copresence of preferential and uniform attachment rules. Phys D Nonlinear Phenom 371:1–12

    Article  MathSciNet  Google Scholar 

  • Rossi RA, Ahmed NK (2015) The Network Data Repository with Interactive Graph Analytics and Visualization. http://networkrepositorycom

  • Rudas A, Tóth B, Valkó B (2007) Random trees and general branching processes. Random Struct Algorit 31(2):186–202

    Article  MathSciNet  Google Scholar 

  • Vázquez A, Pastor-Satorras R, Vespignani A (2002) Large-scale topological and dynamical properties of the internet. Phys Rev E 066130:65

    Google Scholar 

  • Wang T, Resnick S (2017) Asymptotic normality of in- and out-degree counts in a preferential attachment model. Stoch Model 33:229–255

    Article  MathSciNet  Google Scholar 

  • Zhang P, Mahmoud H (2020) On nodes of small degrees and degree profile in preferential dynamic attachment circuits. Methodol Comput Appl Probab 22:625–645

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan Yousuf.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Formulation and Derivation of Recurrence Relation for Degree Distribution

Appendix A: Formulation and Derivation of Recurrence Relation for Degree Distribution

In upcoming sections, we will find the exact form of a recurrence relation for the degree distribution and evaluate the relation for the limit \(t \to \infty \).

1.1 A.1 Edge-Step for k = 1

A recurrence relation for k = 1 will be formed and its value for \(t \to \infty \) will be determined in this section.

Rewriting Eq. 9 in the following form,

$$ N_{1,t+1,m} = \biggl(1 - \frac{2\delta}{t+1}- \frac{1-\delta}{e_{t}+m} \biggr) N_{1,t+1,m-1}, $$

and repeatedly using the above relation for \(m=1,2,\dots \), we can write N1,t+ 1 in terms of N1,t+ 1,0,

$$ N_{1,t+1} = \prod\limits_{m=1}^{{{\varDelta}} e_{t}} \biggl(1 - \frac{2\delta}{t+1}- \frac{1-\delta}{e_{t}+m} \biggr) N_{1,t+1,0}. $$

Using the relation given by Eq. 4, we get the following expression for N1,t+ 1,

$$ N_{1,t+1} = \left[\prod\limits_{m=1}^{{{\varDelta}} e_{t}} \biggl(1 - \frac{2\delta}{t+1}- \frac{1-\delta}{e_{t}+m} \biggr) \right] \biggl(1 + \left( 1- \frac{1}{2e_{t}}\right)N_{1,t} \biggr), $$

which on simplification becomes,

$$ N_{1,t+1} = \prod\limits_{m=1}^{{{\varDelta}} e_{t}} \biggl(1 - \frac{2\delta}{t+1}- \frac{1-\delta}{e_{t}+m} \biggr) + \biggl(1- \frac{1}{2e_{t}}\biggr)\prod\limits_{m=1}^{{{\varDelta}} e_{t}} \biggl(1 - \frac{2\delta}{t+1}- \frac{1-\delta}{e_{t}+m} \biggr) N_{1,t}. $$

Using \(P_{1,t} = \frac {N_{1,t}}{t}\), above relation reduces to

$$ (t+1)P_{1,t+1} = \prod\limits_{m=1}^{{{\varDelta}} e_{t}} \biggl(1 - \frac{2\delta}{t+1}- \frac{1-\delta}{e_{t}+m} \biggr) + \biggl(1- \frac{1}{2e_{t}}\biggr)tP_{1,t}\prod\limits_{m=1}^{{{\varDelta}} e_{t}} \biggl(1 - \frac{2\delta}{t+1}- \frac{1-\delta}{e_{t}+m} \biggr). $$

Replacing Δet by α, we get,

$$ \begin{array}{@{}rcl@{}} (t+1)P_{1,t+1} &=& \prod\limits_{m=1}^{\alpha} \biggl(1 - \frac{2\delta}{t+1}- \frac{1-\delta}{(\alpha+1)(t-1)+m} \biggr)\\ &&+\biggl(1- \frac{1}{2(\alpha+1)(t-1) }\biggr)tP_{1,t} \prod\limits_{m=1}^{\alpha} \biggl(1 - \frac{2\delta}{t+1}- \frac{1-\delta}{(\alpha+1)(t-1)+ m} \biggr). \end{array} $$

Now consider a term occurring on R.H.S., which can be re-written in the form,

$$ \begin{array}{@{}rcl@{}} &&\prod\limits_{m=1}^{\alpha} \biggl(1 - \frac{2\delta}{t+1}- \frac{1-\delta}{(\alpha+1)(t-1)+m} \biggr)\\ &&= 1 - \sum\limits_{m=1}^{\alpha}\frac{2\delta}{t+1}+ \frac{1-\delta}{(\alpha+1)(t-1)+m}+ \text{ terms of order less than } O\left( \frac{1}{t}\right). \end{array} $$
(16)

This reduces the degree-distribution relationship into the following form,

$$ \begin{array}{@{}rcl@{}} tP_{1,t+1} + P_{1,t+1} &=& 1 + tP_{1,t} - \frac{t}{2(\alpha+1)(t-1)} P_{1,t}\\ &&- tP_{1,t}\sum\limits_{m=1}^{\alpha} \biggl(\frac{2\delta}{t+1}+ \frac{1-\delta}{(\alpha+1)(t-1)+m}\biggr)\\ &&+\text{ terms of order less than } O(1). \end{array} $$
(17)

Applying the limit \(t \to \infty \), we get

$$ P_{1} = 1 - \frac{1}{2(\alpha+1)} P_{1} - \sum\limits_{m=1}^{\alpha}\biggl(2\delta+ \frac{1-\delta}{\alpha+1}\biggr)P_{1}, $$

which can be written as,

$$ P_{1} = \frac{2\alpha+2}{4\alpha^{2}\delta + 2\alpha \delta+4\alpha + 3}. $$
(18)

1.2 A.2 Derivation of the Recurrence Relation for Degree Distribution k > 1

An exact form of the recurrence relation will be derived here. The recurrence formula writes Nk, t+ 1, number of nodes of degree k at time t + 1, in terms of Nh, t for \(h=k,k-1, \dots \). The network evolves through both node- and edge- steps. The formulation is valid whether Δet is constant or varies over time t.

We introduce the following functions

$$ {{\varPsi}}_{k,m} = \biggl(1 - \frac{2\delta}{t+1}- \frac{k(1-\delta)}{e_{t}+m} \biggr) \text{ and } {{\varPhi}}_{k-1,m} = \biggl(\frac{2\delta}{t+1}+ \frac{(k-1)(1-\delta)}{e_{t}+m} \biggr)$$

and re-write Eq. 8 in the following form forms: for m = 1,

$$ N_{k,t+1,1} = {{\varPsi}}_{k,1} N_{k,t+1,0} + {{\varPhi}}_{k-1,1}N_{k-1,t+1,0}, $$

and in general for adding mth edge,

$$ N_{k,t+1,m} = {{\varPsi}}_{k,m} N_{k,t+1,m-1} + {{\varPhi}}_{k-1,m} N_{k-1,t+1,m-1}. $$
(19)

Define an operator \(\mathcal {D}\) with the following properties,

  • P1:

    $$ \mathcal{D}f_{k}= \left\{ \begin{array}{ll} f_{k-1} & \text{if } k > 1 \\ 0 & \text{if } k =1 \end{array} \right. $$
  • P2: \(\mathcal {D}^{n} f_{k}= \mathcal {D}^{n-1} (\mathcal {D}f_{k}) \text { for } n > 1\)

  • P3: \(\mathcal {D} f_{k} h_{k} = (\mathcal {D}f_{k}) (\mathcal {D}h_{k})\)

  • P4: \(\mathcal {D} (f_{k} + h_{k}) = (\mathcal {D}f_{k})+(\mathcal {D}h_{k})\)

Here fk and hk can be either Nk, t, m ,Ψk, m or Φk, m.

$$ \begin{array}{@{}rcl@{}} N_{k,t+1,1} &=& ({{\varPsi}}_{k,1} + {{\varPhi}}_{k-1,1}\mathcal{D})N_{k,t+1,0},\\ N_{k,t+1,2} &=& ({{\varPsi}}_{k,2} + {{\varPhi}}_{k-1,2}\mathcal{D})N_{k,t+1,1},\\ N_{k,t+1,3} &=& ({{\varPsi}}_{k,3} + {{\varPhi}}_{k-1,3}\mathcal{D})N_{k,t+1,2},\\ \end{array} $$

Above three relations can be combined to rewrite Nk, t+ 1,3 as,

$$ N_{k,t+1,3} = ({{\varPsi}}_{k,3} + {{\varPhi}}_{k-1,3}\mathcal{D})({{\varPsi}}_{k,2} + {{\varPhi}}_{k-1,2}\mathcal{D})({{\varPsi}}_{k,1} + {{\varPhi}}_{k-1,1}\mathcal{D})N_{k,t+1,0}, $$

In the general form, the edge-step gives the following relationship:

$$ N_{k,t+1}= \prod\limits_{i={{\varDelta}} e_{t}}^{1}({{\varPsi}}_{k,i} + {{\varPhi}}_{k-1,i}\mathcal{D})N_{k,t+1,0}. $$

The node-step can be written in a modified form,

$$ N_{k,t+1,0} = \biggl(1 - \frac{k}{2e_{t}} + \frac{k-1}{2e_{t}} \mathcal{D}\biggr)N_{k,t}. $$

implying

$$ N_{k,t+1} = \prod\limits_{i={{\varDelta}} e_{t}}^{1} \biggl({{\varPsi}}_{k,i} + {{\varPhi}}_{k-1,i}\mathcal{D}\biggr)\biggl(1 - \frac{k}{2e_{t}} + \frac{k-1}{2e_{t}} \mathcal{D}\biggr)N_{k,t}. $$
(20)

This is a recurrence relation for k > 1 with \(\mathcal {D}^{k} f_{k} = 0\). Note that product components do not commute due to the occurrence of the operator \(\mathcal {D}\). If we apply the operator \(\mathcal {D}\) to succeeding product components and collect coefficients of Nkn, t’s, the above recurrence relation takes the following form,

$$ N_{k,t+1} = \sum\limits_{n=0}^{{{\varDelta}} e_{t}+1} C_{k-n,{{\varDelta}} e_{t}}N_{k-n,t}, $$

or

$$ (t+1)P_{k,t+1} = \sum\limits_{n=0}^{{{\varDelta}} e_{t}+1} C_{k-n,{{\varDelta}} e_{t}}tP_{k-n,t}. $$
(21)

Next, we find expressions for these coefficients \(C_{k-n,{{\varDelta }} e_{t}}\)’s,

1.2.1 \({ C_{k, {{\varDelta }} e_{t}}} \)

\(C_{k, {{\varDelta }} e_{t}}\) is the coefficient of Nk, t and can be readily computed,

$$ C_{k,{{\varDelta}} e_{t}} = \biggl(1 - \frac{k}{2e_{t}}\biggr)\prod\limits_{m=1}^{{{\varDelta}} e_{t}} {{\varPsi}}_{k,m}. $$

1.2.2 \({ C_{k-1, {{\varDelta }} e_{t}}} \)

Consider \(C_{k-1,{{\varDelta }} e_{t}}\), coefficient of the Nk− 1,t. The product given by Eq. 20 is expanded into a sum of products. Products in which \(\mathcal {D}\) appears exactly once, form the coefficient of \(C_{k-1,{{\varDelta }} e_{t}}\). The coefficient \(C_{k-1,{{\varDelta }} e_{t}}\) is the sum of two components, say, \(C^{1}_{k-1,{{\varDelta }} e_{t}}\) and \(C^{2}_{k-1,{{\varDelta }} e_{t}}\). This is based on the choice, whether \((1 - \frac {k}{2e_{t}})\) or \(\frac {k-1}{2e_{t}}\mathcal {D}\) is chosen from the product component \((1 - \frac {k}{2e_{t}} + \frac {k-1}{2e_{t}} \mathcal {D})\) appearing in Eq. 20.

The component \(C^{1}_{k-1,{{\varDelta }} e_{t}}\) is given as:

$$ C^{1}_{k-1,{{\varDelta}} e_{t}} = \prod\limits_{i={{\varDelta}} e_{t}}^{1}\biggl({{\varPsi}}_{k,i}\biggr)\biggl(\frac{k-1}{2e_{t}} \biggr) $$

For computing \(C^{2}_{k-1,{{\varDelta }} e_{t}}\), we choose \(\left (1 - \frac {k}{2e_{t}}\right )\) from the binomial \(\left (1 - \frac {k}{2e_{t}} + \frac {k-1}{2e_{t}} \mathcal {D}\right )\). Now, consider the product of binomials, \(\prod \limits _{i={{\varDelta }} e_{t}}^{1}({{\varPsi }}_{k,i} + {{\varPhi }}_{k-1,i}\mathcal {D})\). Exactly one term of the form \({{\varPhi }}_{k-1,i}\mathcal {D}\) is selected. If the term is selected at ith position, we get

\({{\varPsi }}_{k,{{\varDelta }} e_{t}} {\dots } {{\varPsi }}_{k,i+1} [{{\varPhi }}_{k-1,i}\mathcal {D}] {{\varPsi }}_{k,i-1}\dots {{\varPsi }}_{k,1}\), which briefly can be written in the form,

$$ \left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}} {{\varPsi}}_{k,l} \right] \biggl[{{\varPhi}}_{k-1,i}\mathcal{D}\biggr] \left[\prod\limits_{m=1}^{i-1} {{\varPsi}}_{k,m}\right]. $$

Operator \(\mathcal {D}\) will apply on each succeeding term Ψk, m (Rule P3).

$$ \left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}} {{\varPsi}}_{k,l} \right] \biggl[{{\varPhi}}_{k-1,i}\biggr] \left[\prod\limits_{m=1}^{i-1} {{\varPsi}}_{k-1,m}\right]\mathcal{D}. $$

Now, the chosen position for Φ can vary from 1 to Δet. Resultantly, we get the sum of all such products and find \(C^{2}_{k-1,{{\varDelta }} e_{t}}\),

$$ C^{2}_{k-1,{{\varDelta}} e_{t}} = \sum\limits_{i=1}^{{{\varDelta}} e_{t}}{{\varPhi}}_{k-1,i} \left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}} {{\varPsi}}_{k,l} \prod\limits_{m=1}^{i-1} {{\varPsi}}_{k-1,m} \right] \mathcal{D}\left( 1 - \frac{k}{2e_{t}}\right). $$

Eventually, coefficients of Nk− 1,t is

$$ C_{k-1,{{\varDelta}} e_{t}} = \left[\prod\limits_{i=1}^{{{\varDelta}} e_{t}}{{\varPsi}}_{k,i}\right]\biggl(\frac{k-1}{2e_{t}} \biggr)+\sum\limits_{i=1}^{{{\varDelta}} e_{t}}{{\varPhi}}_{k-1,i} \left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}} {{\varPsi}}_{k,l} \prod\limits_{m=1}^{i-1} {{\varPsi}}_{k-1,m} \right] \biggl(1 - \frac{k-1}{2e_{t}}\biggr). $$

1.2.3 \({ C_{k-2, {{\varDelta }} e_{t}}} \)

Now consider \(C_{k-2,{{\varDelta }} e_{t}}\), the coefficient of Nk− 2,t. As was assumed previously, \(C_{k-2,{{\varDelta }} e_{t}}\) is the sum of two components. For one component, we choose \((1 - \frac {k}{2e_{t}})\) from the the binomial \((1 - \frac {k}{2e_{t}} + \frac {k-1}{2e_{t}} \mathcal {D})\). To get an coefficient in Nk− 2,t, we have to select exactly two terms of the form \({{\varPhi }}_{k-1,i}\mathcal {D}\) from the product of binomials \(\prod \limits _{i={{\varDelta }} e_{t}}^{1} \biggl ({{\varPsi }}_{k,i} + {{\varPhi }}_{k-1,i}\mathcal {D}\biggr )\). If we select these terms at ith and jth positions with i > j, we get,

\({{\varPsi }}_{k,{{\varDelta }} e_{t}} {\dots } {{\varPsi }}_{k,i+1} ({{\varPhi }}_{k-1,i}\mathcal {D}) {{\varPsi }}_{k,i-1}{\dots } {\dots } {{\varPsi }}_{k,j+1} ({{\varPhi }}_{k-1,j}\mathcal {D}) {{\varPsi }}_{k,j-1}\dots {{\varPsi }}_{k,1}\)

Operator \(\mathcal {D}\) will apply on each succeeding term Ψk, m and Φk, m (Rule P3). In a brief form,

$$ \begin{array}{@{}rcl@{}} &&\left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}}{{\varPsi}}_{k,l}\right] \biggl[{{\varPhi}}_{k-1,i}\mathcal{D}\biggr] \left[\prod\limits_{m=j+1}^{i-1} {{\varPsi}}_{k,m}\right] \biggl[{{\varPhi}}_{k-1,j}\mathcal{D}\biggr] \left[\prod\limits_{n=1}^{j-1} {{\varPsi}}_{k,n}\right]\\ &&=\left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}}{{\varPsi}}_{k,l}\right] {{\varPhi}}_{k-1,i} \left[\prod\limits_{m=j+1}^{i-1}{{\varPsi}}_{k-1,m}\right] {{\varPhi}}_{k-2,j} \left[\prod\limits_{n=1}^{j-1} {{\varPsi}}_{k-2,n}\right] \mathcal{D}^{2}. \end{array} $$

Summing all such products,

$$ \sum\limits_{i={{\varDelta}} e_{t}}^{2}\sum\limits_{j=i-1}^{1} {{\varPhi}}_{k-1,i} {{\varPhi}}_{k-2,j} \left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}}{{\varPsi}}_{k,l}\right] \left[\prod\limits_{m=j+1}^{i-1} {{\varPsi}}_{k-1,m}\right] \left[\prod\limits_{n=1}^{j-1} {{\varPsi}}_{k-2,n}\right]. $$

Equivalently,

$$ \left( \sum\limits_{i=2}^{{{\varDelta}} e_{t}}\sum\limits_{j=1}^{i-1} {{\varPhi}}_{k-1,i} {{\varPhi}}_{k-2,j} \left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}}{{\varPsi}}_{k,l}\right] \left[\prod\limits_{m=j+1}^{i-1} {{\varPsi}}_{k-1,m}\right] \left[\prod\limits_{n=1}^{j-1} {{\varPsi}}_{k-2,n}\right]\right)\mathcal{D}^{2} \biggl(1 - \frac{k}{2e_{t}}\biggr), $$

which becomes

$$ \left( \sum\limits_{i=2}^{{{\varDelta}} e_{t}}\sum\limits_{j=1}^{i-1} {{\varPhi}}_{k-1,i} {{\varPhi}}_{k-2,j} \left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}}{{\varPsi}}_{k,l}\right] \left[\prod\limits_{m=j+1}^{i-1} {{\varPsi}}_{k-1,m}\right] \left[\prod\limits_{n=1}^{j-1} {{\varPsi}}_{k-2,n}\right] \right) \biggl(1 - \frac{k-2}{2e_{t}}\biggr)\mathcal{D}^{2}. $$

Adding contribution from the second component,

$$ \begin{array}{@{}rcl@{}} &&C_{k-2,{{\varDelta}} e_{t}} = \sum\limits_{i=1}^{{{\varDelta}} e_{t}}{{\varPhi}}_{k-1,i} \left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}} {{\varPsi}}_{k,l} \prod\limits_{m=1}^{i-1} {{\varPsi}}_{k-1,m} \right] \biggl(\frac{k-2}{2e_{t}}\biggr) \mathcal{D}^{2}\\ &&+ \left[\sum\limits_{i=2}^{{{\varDelta}} e_{t}}\sum\limits_{j=1}^{i-1} {{\varPhi}}_{k-1,i} {{\varPhi}}_{k-2,j} \left[\prod\limits_{l=i+1}^{{{\varDelta}} e_{t}}{{\varPsi}}_{k,l}\right] \left[\prod\limits_{m=j+1}^{i-1} {{\varPsi}}_{k-1,m}\right] \left[\prod\limits_{n=1}^{j-1} {{\varPsi}}_{k-2,n}\right]\right]\\&& \left( 1 - \frac{k-2}{2e_{t}}\right)\mathcal{D}^{2}. \end{array} $$
(22)

1.2.4 \({C_{k-n,{{\varDelta }} e_{t}}}\) for \(n = 1,2,3,\dots ,{{\varDelta }} e_{t}\)

The general form for \(C_{k-n,{{\varDelta }} e_{t}}\) can be obtained in the similar way. If we select n indices for Φ terms with \( i_{n} > i_{n-1}>{\dots } >i_{1}\), then we get the coefficient,

$$ \begin{array}{@{}rcl@{}} &&C_{k-n,{{\varDelta}} e_{t}}\\ &&=\sum\limits_{i_{n}=n}^{{{\varDelta}} e_{t}}\sum\limits_{i_{n-1}=n-1}^{i_{n}-1}{\dots} \sum\limits_{i_{1}=1}^{i_{1}-1} \left[\prod\limits_{j=1}^{n}{{\varPhi}}_{k-j,i_{j}}\right] \left[\prod\limits_{m_{1}=i_{n}+1}^{{{\varDelta}} e_{t}}{{\varPsi}}_{k,m_{1}}\right]\left[\prod\limits_{m_{2}=i_{n-1}+1}^{i_{n}-1}{{\varPsi}}_{k-1,m_{1}} \right] \\ &&\quad\dots\left[\prod\limits_{m_{n+1}=1}^{i_{1} - 1}{{\varPsi}}_{k-n,m_{1}}\right]\left( 1 - \frac{k-n}{2e_{t}}\right)\\ &&\quad+\sum\limits_{i_{n-1}=n-1}^{{{\varDelta}} e_{t}}\sum\limits_{i_{n-2}=n-2}^{i_{n-1}-1}{\dots} \sum\limits_{i_{1}=1}^{i_{1}-1} \left[\prod\limits_{j=1}^{n-1}{{\varPhi}}_{k-j,i_{j}}\right] \left[\prod\limits_{m_{1}=i_{n-1}+1}^{{{\varDelta}} e_{t}}{{\varPsi}}_{k,m_{1}}\right]\left[\prod\limits_{m_{2}=i_{n-2}+1}^{i_{n-1}-1}{{\varPsi}}_{k-1,m_{1}} \right] \\ &&\quad\dots\left[\prod\limits_{m_{n}=1}^{i_{1} - 1}{{\varPsi}}_{k-n+1,m_{1}}\right]\biggl(\frac{k-n}{2e_{t}}\biggr), \end{array} $$
(23)

or in the simplest form,

$$ \begin{array}{@{}rcl@{}} C_{k-n,{{\varDelta}} e_{t}} &=& \sum\limits_{i=1}^{{\binom{{{\varDelta}} e_{t}}{n}}}\left[\prod\limits_{j=1}^{n} {{\varPhi}} \prod\limits_{j=1}^{{{\varDelta}} e_{t}- n} {{\varPsi}} \right]\biggl(1 - \frac{k-n}{2e_{t}}\biggr) \\&&+\sum\limits_{i=1}^{{\binom{{{\varDelta}} e_{t}}{n-1}}}\left[\prod\limits_{j=1}^{n-1} {{\varPhi}} \prod\limits_{j=1}^{{{\varDelta}} e_{t}- n+1} {{\varPsi}} \right]\biggl(\frac{k-n}{2e_{t}}\biggr). \end{array} $$

1.3 A.3 Evaluation of the Recurrence Relation

This section determines the stationary degree distribution. It finds the limiting value (\(\lim \limits t \to \infty \)) of the recurrence relation (21). To accomplish this, we replace Δet by α and evaluate the limit \(\lim \limits _{t \to \infty } t~C_{k-n, {{\varDelta }} e_{t}}\) for \(n=0,1,2,\dots \).

$$ {{\varPsi}}_{k,m} = \biggl(1 - \frac{2\delta}{t+1}- \frac{k(1-\delta)}{e_{t}+m} \biggr) \text{ and } {{\varPhi}}_{k-1,m} = \biggl(\frac{2\delta}{t+1}+ \frac{(k-1)(1-\delta)}{e_{t}+m} \biggr) $$

1.3.1 C k, α

$$ \begin{array}{@{}rcl@{}} tC_{k,\alpha} &=& t\biggl(1 - \frac{k}{2e_{t}}\biggr)\prod\limits_{m=1}^{\alpha} \biggl(1 - \frac{2\delta}{t+1}- \frac{k(1-\delta)}{(\alpha+1)(t-1)+m} \biggr)\\ &=& t\biggl(1 - \frac{k}{2(\alpha+1)(t-1)}\biggr) \biggl(1-\sum\limits_{m=1}^{\alpha} \bigl(\frac{2\delta}{t+1}+ \frac{k(1-\delta)}{(\alpha+1)(t-1)+ m} \bigr) + O\left( \frac{1}{t^{2}}\right) \biggr). \end{array} $$

Now expanding further and ignoring terms of order \(\frac {1}{t}\) and less,

$$ \begin{array}{@{}rcl@{}} \lim\limits_{t \to \infty} tC_{k,\alpha}P_{k,t}& =& \lim\limits_{t \to \infty} t \biggl(1-\sum\limits_{m=1}^{\alpha} \bigl(\frac{2\delta}{t+1}+ \frac{k(1-\delta)}{(\alpha+1)(t-1)+ m} \bigr) - \frac{kt}{2(\alpha+1)(t-1)}\biggr)P_{k,t}\\ &=& \lim\limits_{t \to \infty}tP_{k,t} - \sum\limits_{m=1}^{\alpha} \biggl(2\delta+ \frac{k(1-\delta)}{\alpha+1} \biggr)P_{k} - \frac{k}{2(\alpha+1)} P_{k}\\ &=& \lim\limits_{t \to \infty}tP_{k,t} - \biggl(2\delta \alpha+ \frac{k(1-\delta)\alpha}{\alpha+1} + \frac{k}{2(\alpha+1)} \biggr)P_{k}\\ &=& \lim\limits_{t \to \infty}tP_{k,t} - \frac{(2\alpha -2\alpha \delta +1)k +4\alpha^{2} \delta +4\alpha \delta}{2(\alpha+1)}P_{k}. \end{array} $$

\({{\varPsi }}_{k,m} = \bigl (1 - \frac {2\delta }{t+1}- \frac {k(1-\delta )}{e_{t}+m} \bigr )\) and \({{\varPhi }}_{k-1,m} = \bigl (\frac {2\delta }{t+1}+ \frac {(k-1)(1-\delta )}{e_{t}+m} \bigr )\)

1.3.2 C k− 1,α

Ck− 1,α is the coefficient of the term Nk− 1,t. It is the sum of two components.

$$ \begin{array}{@{}rcl@{}} t C_{k-1,\alpha} &=& t\left[\prod\limits_{i=1}^{\alpha}{{\varPsi}}_{k,i}\right]\biggl(\frac{k-1}{2(\alpha+1)(t-1)} \biggr)\\ && +t\sum\limits_{i=1}^{\alpha}{{\varPhi}}_{k-1,i} \left[\prod\limits_{l=i+1}^{\alpha} {{\varPsi}}_{k,l} \prod\limits_{m=1}^{i-1} {{\varPsi}}_{k-1,m} \right] \biggl(1 - \frac{k-1}{2(\alpha+1)(t-1)}\biggr). \end{array} $$
(24)

Now expanding further and ignoring terms of order \(\frac {1}{t}\) and less than it,

$$ tC_{k-1,\alpha} = t\biggl(\frac{k-1}{2(\alpha+1)(t-1)} \biggr)+t\sum\limits_{i=1}^{\alpha}\biggl(\frac{2\delta}{t+1}+ \frac{(k-1)(1-\delta)}{(\alpha+1)(t-1)+i} \biggr) (1)(1) (1). $$
$$ \begin{array}{@{}rcl@{}} \lim\limits_{t \to \infty} tC_{k-1,\alpha}P_{k-1,t} &=& \lim\limits_{t \to \infty} \biggl(\frac{(k-1)t}{2(\alpha+1)(t-1)} +\sum\limits_{i=1}^{\alpha}\bigl(\frac{2\delta t}{t+1}+ \frac{t(k-1)(1-\delta)}{(\alpha+1)(t-1)+i} \bigr) \biggr)P_{k-1,t}\\ &=& \biggl (\frac{k-1}{2(\alpha+1)} + \sum\limits_{i=1}^{\alpha}\left( 2\delta + \frac{(k-1)(1-\delta)}{\alpha+1} \right) \biggr)P_{k-1}\\ &=& \biggl(\frac{k-1}{2(\alpha+1)} + 2\delta \alpha + \frac{(k-1)(1-\delta)\alpha}{\alpha+1} \biggr) P_{k-1}\\ &=& \frac{ k-1 + 2 \delta \alpha(\alpha+1) + 2(k-1)(1-\delta)\alpha} {2(\alpha+1)} P_{k-1}\\ &=& \frac{(2\alpha -2\alpha \delta +1)k +4\alpha^{2} \delta +6\alpha \delta- 2\alpha-1 }{2(\alpha+1)}P_{k-1}. \end{array} $$

1.3.3 C kn, α for n = 2, 3,...α

$$ \begin{array}{@{}rcl@{}} C_{k-n,\alpha} &=& \sum\limits_{i=1}^{{\binom{\alpha}{n}}}\left[\prod\limits_{j=1}^{n} {{\varPhi}} \prod\limits_{j=1}^{{{\varDelta}} e_{t}- n} {{\varPsi}} \right]\biggl(1 - \frac{k-n}{2e_{t}}\biggr) \\&&+\sum\limits_{i=1}^{{\binom{\alpha}{n-1}}}\left[\prod\limits_{j=1}^{n-1} {{\varPhi}} \prod\limits_{j=1}^{\alpha- n+1} {{\varPsi}} \right] \biggl(\frac{k-n}{2e_{t}}\biggr). \end{array} $$

Ckn, α has order \(O(\frac {1}{t^{n}})\). Thus tCkn, α approaches to 0 on applying the limit for n = 2, 3,...α.

Now we have all the limits required to determine the recurrence relation for the degree distribution:

$$ \begin{array}{@{}rcl@{}} \lim\limits_{t \to \infty} [ t P_{k,t+1} + P_{k,t+1}] &=& \lim\limits_{t \to \infty} t P_{k,t} - \frac{(2\alpha -2\alpha \delta +1)k +4\alpha^{2} \delta +4\alpha \delta}{2(\alpha+1)}P_{k} \\&&+ \frac{(2\alpha -2\alpha \delta +1)k +4\alpha^{2} \delta +6\alpha \delta- 2\alpha-1 }{2(\alpha+1)}P_{k-1}. \end{array} $$
$$ P_{k} = \frac{(2\alpha -2\alpha \delta +1)k +4\alpha^{2} \delta +6\alpha \delta- 2\alpha-1 }{(2\alpha -2\alpha \delta +1)k +4\alpha^{2} \delta +4\alpha \delta + 2(\alpha+1)}P_{k-1}. $$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, R., Yousuf, M.I. & Abid, M. Uniform Preferential Selection Model for Generating Scale-free Networks. Methodol Comput Appl Probab 24, 449–470 (2022). https://doi.org/10.1007/s11009-021-09854-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-021-09854-w

Keywords

Mathematics Subject Classification (2010)

Navigation