Skip to main content

Advertisement

Log in

Volatility Uncertainty Quantification in a Stochastic Control Problem Applied to Energy

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

This work designs a methodology to quantify the uncertainty of a volatility parameter in a stochastic control problem arising in energy management. The difficulty lies in the non-linearity of the underlying scalar Hamilton-Jacobi-Bellman equation. We proceed by decomposing the unknown solution on a Hermite polynomial basis (of the unknown volatility), whose different coefficients are solutions to a system of second order parabolic non-linear PDEs. Numerical tests show that computing the first basis elements may be enough to get an accurate approximation with respect to the uncertain volatility parameter. We provide an example of the methodology in the context of a swing contract (energy contract with flexibility in purchasing energy power), this allows us to introduce the concept of Uncertainty Value Adjustment (UVA), whose aim is to value the risk of misspecification of the volatility model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basel Committee on Banking Supervision (2015) Review of the credit valuation adjustment risk framework. Bank for International Settlements

  • Bardou O, Bouthemy S, Pages G (2009) Optimal quantization for the pricing of swing options. Appl Math Finance 16(2):183–217

    Article  MathSciNet  Google Scholar 

  • Barrera-Esteve C, Bergeret F, Dossal C, Gobet E, Meziou A, Munos R, Reboul-Salze D (2006) Numerical methods for the pricing of swing options: a stochastic control approach. Methodol Comput Appl Probab 8(4):517–540

    Article  MathSciNet  Google Scholar 

  • Benkert K, Fischer R (2007) An efficient implementation of the Thomas algorithm for block pentadiagonal systems on vector computers. In: Shi Y, van Albada GD, Dongarra J, Sloot PMA (eds) Proceedings of the 7th International Conference on Computer Science, ICCS, pp 144–151

    Chapter  Google Scholar 

  • Briand P, Labart C (2014) Simulation of BSDEs by Wiener Chaos Expansion. Ann Appl Probab 24(3):1129–1171

    Article  MathSciNet  Google Scholar 

  • Brennan MJ (1991) The price of convenience and the valuation of commodity contingent claims. Stochastic Models and Option Values 200(22–71)

  • Barles G, Souganidis PE (1991) Convergence of approximation schemes for fully nonlinear second order equations. Asymptot Anal 4:271–283

    Article  MathSciNet  Google Scholar 

  • Clewlow L, Strickland C, Kaminski V (2001) Valuation of swing contracts in trees. Energy Power Risk Manag 6(4):33–34

    Google Scholar 

  • Gobet E (2002) LAN Property for ergodic diffusion with discrete observations. Ann Inst H Poincaré, Probab Statist 38(5):711–737

    Article  MathSciNet  Google Scholar 

  • Gerritsma M, van der Steen JB, Vos P, Karniadakis GE (2010) Time-dependent generalized polynomial chaos. J Comput Phys 229(22):8333–8363

    Article  MathSciNet  Google Scholar 

  • Harvey AC (1989) Forecasting, Structural Time Series Analysis, and the Kalman Filter. Cambridge

  • Huschto T, Sager S (2014) Solving stochastic optimal control problems by a Wiener chaos approach. Vietnam J Math 42(1):83–113

    Article  MathSciNet  Google Scholar 

  • Jaillet P, Ronn EI, Tompaidis S (2004) Valuation of commodity-based swing options. Manag Sci 50:909–921

    Article  Google Scholar 

  • Keppo J (2004) Pricing of electricity swing options. J Derivatives 11(3):26–43

    Article  Google Scholar 

  • Kleiber M, Hien TD (1992) The stochastic finite element method (basic perturbation technique and computer implementation). Wiley, Chichester

    MATH  Google Scholar 

  • Le Maître O, Knio OM (2010) Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Loh WL (1996) On latin hypercube sampling. Ann Stat 24(5):2058–2080

    Article  MathSciNet  Google Scholar 

  • Liu W, Yang Y, Lu G (2003) Viscosity solutions of fully nonlinear parabolic systems. J Math Anal Appl 281(1):362–381

    Article  MathSciNet  Google Scholar 

  • Mikulevicius R, Rozovskii B (1998) Linear parabolic stochastic PDE and Wiener chaos. SIAM J Math Anal 29(2):452–480

    Article  MathSciNet  Google Scholar 

  • Mikulevicius R, Rozovskii B (2005) Global L2-solutions of stochastic navier-Stokes equations. Ann Probab 33(1):137–176

    Article  MathSciNet  Google Scholar 

  • Manoliu M, Tompaidis S (2002) Energy futures prices: term structure models with Kalman filter estimation. Appl Math Finance 9(1):21–43

    Article  Google Scholar 

  • Niederreiter H (1992) Random number generation and quasi-Monte-Carlo methods, volume 63 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia

    Book  Google Scholar 

  • Prakasa Rao BLS (1999) Statistical inference for diffusion type processes Kendall’s Library of statistics, vol 8. Edward Arnold. Oxford University Press, London

    Google Scholar 

  • Schwartz E (1997) The stochastic behavior of commodity prices: implications for valuation and hedging. J Finance 52(3):923–973

    Article  Google Scholar 

  • Schwartz E, Smith JE (2000) Short-term variations and long-term dynamics in commodity prices. Manag Sci 46(7):893–911

    Article  Google Scholar 

  • Tourin A (2013) An introduction to finite difference methods for PDEs in finance. In: Touzi N (ed) Optimal stochastic target problems and backward SDE, Fields Institute Monographs. Springer

  • Teckentrup AL, Scheichl R, Giles MB, Ullmann E (2013) Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer Math 125(3):569–600

    Article  MathSciNet  Google Scholar 

  • Warin X (2016) Some non monotone schemes for time dependent Hamilton-Jacobi-Bellman equations in stochastic control. J Sci Comp 66(3):1122–1147

    Article  MathSciNet  Google Scholar 

  • Xiu D (2009) Fast numerical methods for stochastic computations: a review. Commun Comput Phys 5(2-4):242–272

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is part of the Chair Financial Risks of the Risk Foundation, the Finance for Energy Market Research Centre (FiME) and the ANR project CAESARS (ANR-15-CE05-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Gobet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernal, F., Gobet, E. & Printems, J. Volatility Uncertainty Quantification in a Stochastic Control Problem Applied to Energy. Methodol Comput Appl Probab 22, 135–159 (2020). https://doi.org/10.1007/s11009-019-09692-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-019-09692-x

Keywords

Mathematics Subject Classification (2010)

Navigation