Skip to main content
Log in

Drawdowns and the Speed of Market Crash

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In this paper we examine the probabilistic behavior of two quantities closely related to market crashes. The first is the drawdown of an asset and the second is the duration of time between the last reset of the maximum before the drawdown and the time of the drawdown. The former is the first time the current drop of an investor’s wealth from its historical maximum reaches a pre-specified level and has been used extensively as a path-dependent measure of a market crash in the financial risk management literature. The latter is the speed at which the drawdown occurs and thus provides a measure of how fast a market crash takes place. We call this the speed of market crash. In this work we derive the joint Laplace transform of the last visit time of the maximum of a process preceding the drawdown, the speed of market crash, and the maximum of the process under general diffusion dynamics. We discuss applications of these results in the pricing of insurance claims related to the drawdown and its speed. Our applications are developed under the drifted Brownian motion model and the constant elasticity of variance (CEV) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Borodin AN, Salminen P (2002) Handbook of Brownian motion—facts and formulae. Basel-Boston-Berlin, Birkhäuser Verlag

  • Carr P, Madan DB (1999) Option valuation using the fast Fourier transform. J Comput Financ 2(4):61–73

    Google Scholar 

  • Carr P, Zhang H, Hadjiliadis O (2011) Maximum drawdown insurance. Int J Theor Appl Financ (to appear). http://userhome.brooklyn.cuny.edu/ohadjiliadis/maximumdrawdown-1.pdf

  • Chekhlov A, Uryasev S, Zabarankin M (2005) Drawdown measure in portfolio optimization. Int J Theor Appl Financ 8(1):13–58

    Article  MathSciNet  MATH  Google Scholar 

  • Cvitanic J, Karatzas I (1995) On portfolio optimization under drawdown constraints. IMA Lecture Notes in Mathematical Applications, vol 65, pp 77–78

  • Douady R, Shiryaev A, Yor M (2000) On probability characteristics of downfalls in a standard Brownian motion. Theory Prob Appl 44:29–38

    Article  MathSciNet  Google Scholar 

  • Graversen SE, Shiryaev A (2000) An extension of P. Lévy’s distributional properties to the case of a Brownian motion with drift. Bernoulli 6:615–620

    Article  MathSciNet  MATH  Google Scholar 

  • Grossman SJ, Zhou Z (1993) Optimal investment strategies for controlling drawdowns. Math Financ 3(3):241–276

    Article  MATH  Google Scholar 

  • Hadjiliadis O, Vecer J (2006) Drawdowns preceding rallies in a Brownian motion model. J Quant Financ 5(5):403–409

    Article  MathSciNet  Google Scholar 

  • Jeanblanc M, Yor M, Chesney M (2009) Mathematical methods for financial markets. Springer-Verlag, London

    Book  MATH  Google Scholar 

  • Jeulin T (1980) Semi-martingales et grossissement d’une filtration. Lecture notes in mathematics, vol 833, Springer-Verlag, Berlin

    Google Scholar 

  • Jeulin T, Yor M (1978) Grossissement d’une filtration et semi-martingales: formules explicites. Lecture notes in mathematics, vol 649. Springer-Verlag, Berlin, pp 78–97

    Google Scholar 

  • Jeulin T, Yor M (1985) Grossissements de filtrations: exemples et applications. Lecture notes in mathematics, vol 1118. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Karatzas I, Shreve SE (1991) Stochastic calculus and Brownian motion. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Kardaras C (2010) On random times. arXiv:1007.1124

  • Lebedev NN (1965) Special functions and their applications. Prentice Hall, New Jersey

    MATH  Google Scholar 

  • Lehoczky JP (1977) Formulas for stopped diffusion processes with stopping times based on the maximum. Ann Probab 5(4):601–607

    Article  MathSciNet  MATH  Google Scholar 

  • Magdon-Ismail M, Atiya A (2004) Maximum drawdown. Risk 17(10):99–102

    Google Scholar 

  • Magdon-Ismail M, Atiya A, Pratap A, Abu-Mostafa Y (2004) On the maximum drawdown of Brownian motion. J Appl Probab 41(1):147–161

    Article  MathSciNet  MATH  Google Scholar 

  • McKean HP (1956) Elementary solutions for certain parabolic partial differential equations. Trans Am Math Soc 82(2):519–548

    Article  MathSciNet  MATH  Google Scholar 

  • Meilijson I (2003) The time to a given drawdown in Brownian motion. Seminaire de probabilités XXXVII, pp 94–108

  • Nikeghbali A (2006) A class of remarkable submartingales. Stoch Process Their Appl 116(6):917–938

    Article  MathSciNet  MATH  Google Scholar 

  • Pospisil L, Vecer J (2010) Portfolio sensitivities to the changes in the maximum and the maximum drawdown. Quantitative Finance 10(6):617–627

    Article  MathSciNet  MATH  Google Scholar 

  • Pospisil L, Vecer J, Hadjiliadis O (2009) Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups. Stoch Process Their Appl 119(8):2563–2578

    Article  MathSciNet  MATH  Google Scholar 

  • Protter PE (2005) Stochastic integration and differential equations. Springer-Verlag, New York

    Google Scholar 

  • Revuz D, Yor M (1999) Continuous martingales and Brownian motion. Springer-Verlag, New York

    MATH  Google Scholar 

  • Salminen P, Vallois P (2007) On maximum increase and decrease of Brownian motion. Ann Inst Henri Poincaré B Probab Stat 43(6):655–676

    Article  MATH  Google Scholar 

  • Sornette D (2003) Why stock markets crash: critical events in complex financial systems. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Tanré E, Vallois P (2006) Range of Brownian motion with drift. J Theor Probab 19(1):45–69

    Article  MATH  Google Scholar 

  • Taylor HM (1975) A stopped Brownian motion formula. Ann Probab 3(2):234–246

    Article  MATH  Google Scholar 

  • Vecer J (2006) Maximum drawdown and directional trading. Risk 19(12):88–92

    Google Scholar 

  • Vecer J (2007) Preventing portfolio losses by hedging maximum drawdown. Wilmott 5(4):1–8

    Google Scholar 

  • Zhang H, Hadjiliadis O (2010) Drawdowns and rallies in a finite time-horizon. Methodol Comput Appl Probab 12(2):293–308

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang H, Hadjiliadis O (2011) Formulas for the Laplace transform of stopping times based on drawdowns and drawups. Stoch Process Their Appl. arXiv:0911.1575

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olympia Hadjiliadis.

Additional information

This research was supported by the NSF grant number 0929317.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Hadjiliadis, O. Drawdowns and the Speed of Market Crash. Methodol Comput Appl Probab 14, 739–752 (2012). https://doi.org/10.1007/s11009-011-9262-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-011-9262-7

Keywords

AMS 2000 Subject Classifications

Navigation