Skip to main content

Advertisement

Log in

Real Time Imaging of Quantum and Thermal Fluctuations: The Case of a Two-Level System

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A quantum system in contact with a heat bath undergoes quantum transitions between energy levels upon absorption or emission of energy quanta by the bath. These transitions remain virtual unless the energy of the system is measured repeatedly, even continuously in time. Isolating the two indispensable mechanisms in competition, we describe in a synthetic way the main physical features of thermally activated quantum jumps. Using classical tools of stochastic analysis, we compute in the case of a two-level system the complete statistics of jumps and transition times in the limit when the typical measurement time is small compared to the thermal relaxation time. The emerging picture is that quantum trajectories are similar to those of a classical particle in a noisy environment, subject to transitions à la Kramer in a multi-well landscape, but with a large multiplicative noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nagourney W., Sandberg J., Dehmelt H.: Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986)

    Article  ADS  Google Scholar 

  2. Sauter Th., Neuhauser W., Blatt R., Toschek P.E.: Observation of quantum jumps. Phys. Rev. Lett. 57, 1696–1698 (1986)

    Article  ADS  Google Scholar 

  3. Bergquist J.C., Hulet R.G., Itano W.M., Wineland D.J.: Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699–1702 (1986)

    Article  ADS  Google Scholar 

  4. Von Neumann J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1932)

    Google Scholar 

  5. Bohr N.: On the constitution of atoms and molecules. Philos. Mag. 26, 476 (1913)

    Article  Google Scholar 

  6. Carmichael H.J.: An Open System Approach to Quantum Optics. Lecture Notes in Physics, vol. 18. Springer, Berlin (1993)

    Google Scholar 

  7. Dalibard J., Castin Y., Molner K.: Wave function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68, 580 (1992)

    Article  ADS  Google Scholar 

  8. Dalibard, J., Castin, Y., Molner, K.: A Wave function approach to dissipative processes. arXiv:0805.4002

  9. Wiseman H., Milburn G.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  10. Murch, K.W., Weber, S.J., Macklin, C., Siddiqi, I.: Observing single quantum trajectories of a superconducting qubit. arXiv:1305.7270

  11. Wisemann, H.M., Gambetta, J.M.: Are dynamical quantum jumps detector dependent? Phys. Rev. Lett. 108, 220402 (2012)

    Google Scholar 

  12. Plenio, M.B., Knight, P.L.: The Quantum jump approach to dissipative dynamics in quantum. Rev. Mod. Phys. 70, 101–144 (1998) [and references therein]

    Google Scholar 

  13. Braginsky, V.B., Khalili, F.Y.: In: Thorne, K.S. (ed.) Quantum Measurement. Cambridge University Press, Cambridge (1992)

  14. Grangier P., Levenson J.A., Poizat J.-P.: Quantum non-demolition measurements in optics. Nature 396, 537542 (1998)

    Article  Google Scholar 

  15. Guerlin C. et al.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889 (2007)

    Article  ADS  Google Scholar 

  16. Gleyzes S. et al.: Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007)

    Article  ADS  Google Scholar 

  17. Barchielli A.: Measurement theory and stochastic differential equations in quantum mechanics. Phys. Rev. A 34, 1642 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  18. Barchielli A., Gregoratti M.: Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case. Lecture Notes in Physics, vol. 782. Springer, Berlin (2009)

    Book  Google Scholar 

  19. Belavkin V.P.: Quantum continual measurements and a posteriori collapse on CCR. Commun. Math. Phys. 146, 611 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Barchielli A., Belavkin V.P.: Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A 24, 1495 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  21. Korotkov A.N., Averin D.V.: Continuous weak measurement of quantum coherent oscillations. Phys. Rev. B 64, 165310 (2001)

    Article  ADS  Google Scholar 

  22. Goan H., Milburn G.J.: Dynamics of a mesoscopic charge quantum bit under continuous quantum measurement. Phys. Rev. B 64, 235307 (2001)

    Article  ADS  Google Scholar 

  23. Gambetta J. et al.: Quantum trajectory approach to circuit QED: quantum jumps and the Zeno effect. Phys. Rev. A 77, 012112 (2008)

    Article  ADS  Google Scholar 

  24. Jacobs K., Lougovski P., Blencowe M.P.: Continuous measurement of the energy eigenstates of a nanomechanical resonator without a nondemolition probe. Phys. Rev. Lett. 98, 147201 (2007)

    Article  ADS  Google Scholar 

  25. Bauer M., Bernard D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84, 044103 (2011)

    Article  ADS  Google Scholar 

  26. Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Pellegrini C.: Existence, uniqueness and approximation of a stochastic Schrödinger equation: the diffusive case. Ann. Probab. 36, 2332–2353 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Bauer M., Benoist T., Bernard D.: Iterated stochastic measurements. J. Phys. A 45, 494020 (2012)

    Article  MathSciNet  Google Scholar 

  29. Caroli B., Caroli C., Roulet B.: Diffusion in a bistable potential: a systematic WKB treatment. J. Stat. Phys. 21, 415–437 (1979)

    Article  ADS  Google Scholar 

  30. Freidlin M.I., Wentzell A.D.: Random Perturbations of Dynamical Systems. Springer, New York (1984)

    Book  MATH  Google Scholar 

  31. Hudson R.L., Parthasarathy K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Jacod J., Protter Ph.: L’essentiel en théorie des probabilités. Cassini, Paris (2003)

    Google Scholar 

  33. Kallenberg O.: Foundations of Modern Probability, 2nd edn. Springer, Berlin (2000)

    Google Scholar 

  34. McKean H.P., Itô K.: Diffusion Processes and their Sample Paths. Classics in Mathematics. Springer, Berlin (1991)

    Google Scholar 

  35. Bauer, M., Bernard, D., et al.: in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, M., Bernard, D. Real Time Imaging of Quantum and Thermal Fluctuations: The Case of a Two-Level System. Lett Math Phys 104, 707–729 (2014). https://doi.org/10.1007/s11005-014-0688-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0688-z

Mathematics Subject Classification

Keywords

Navigation