Skip to main content
Log in

A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach V., Barbaroux J.-M., Helffer B., Siedentop H.: On the stability of the relativistic electron–positron field. Commun. Math. Phys. 201(2), 445–460 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bär, C., Fredenhagen, K. (eds): Quantum Field Theory on Curved Spacetimes. Lecture Notes in Physics, vol. 786. Springer, Berlin (2009)

  3. Christensen S.M.: Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point-separation method. Phys. Rev. D (3) 14(10), 2490–2501 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  4. Collins J.C.: Renormalization, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  5. Deckert, D.-A., Dürr, D., Merkl, F., Schottenloher, M.: Time Evolution of the External Field Problem in QED. arXiv:0906.0046 [math-ph] (2009)

  6. Dirac P.A.M.: A theory of electrons and protons. Proc. R. Soc. Lond. A 126, 360–365 (1930)

    Article  ADS  MATH  Google Scholar 

  7. Dirac P.A.M.: Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Cambridge Philos. Soc. 30, 150–163 (1934)

    Article  ADS  Google Scholar 

  8. Dirac, P.A.M.: Directions in physics. Wiley, New York (Five lectures delivered during a visit to Australia and New Zealand, August–September, 1975) 1978

  9. Dürr H.-P., Heisenberg W., Mitter H., Schlieder S., Yamazaki K.: Zur Theorie der Elementarteilchen. Z. Naturf. 14a, 441–485 (1959)

    ADS  Google Scholar 

  10. Dyson F.J.: The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736–1755 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Epstein H., Glaser V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré Section A (N.S.) 19, 211–295 (1973)

    MathSciNet  Google Scholar 

  12. Feynman R.: The theory of positrons. Phys. Rev. 76, 749–759 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Fierz H., Scharf G.: Particle interpretation for external field problems in QED. Helv. Phys. Acta 52(4), 437–453 (1979)

    MathSciNet  Google Scholar 

  14. Finster, F.: The Principle of the Fermionic Projector, hep-th/0001048, hep-th/0202059, hep-th/0210121. AMS/IP Studies in Advanced Mathematics, vol. 35. American Mathematical Society, Providence (2006)

  15. Finster, F.: An Action Principle for an Interacting Fermion System and its Analysis in the Continuum Limit. arXiv:0908.1542 [math-ph] (2009)

  16. Finster, F.: From discrete space-time to Minkowski space: Basic mechanisms, methods and perspectives. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds.) Quantum Field Theory. Birkhäuser Verlag, pp. 235–259 (2009). arXiv:0712.0685 [math-ph]

  17. Finster, F.: Entanglement and second quantization in the framework of the fermionic projector. J. Phys. A Math. Theor. 43, 395302 (2010). arXiv:0911.0076 [math-ph]

    Google Scholar 

  18. Finster, F.: The fermionic projector, entanglement, and the collapse of the wave function. In: The Proceedings of DICE2010 (2011). arXiv:1011.2162 [quant-ph]

  19. Finster, F., Grotz, A.: The causal perturbation expansion revisited: rescaling the interacting Dirac sea. J. Math. Phys. 51, 072301 (2010). arXiv:0901.0334 [math-ph]

    Google Scholar 

  20. Fulling S.A., Sweeny M., Wald R.M.: Singularity structure of the two-point function quantum field theory in curved spacetime. Commun. Math. Phys. 63(3), 257–264 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Glimm J., Jaffe A.: Quantum Physics, a Functional Integral Point of View, 2nd edn. Springer, New York (1987)

    Google Scholar 

  22. Gravejat, P., Lewin, M., Séré, E.: Renormalization and Asymptotic Expansion of Dirac’s Polarized Vacuum (2010). arXiv:1004.1734v1

  23. Hainzl C., Lewin M., Séré E.: Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation. Commun. Math. Phys. 257(3), 515–562 (2005) arXiv:math-ph/0403005

    Article  ADS  MATH  Google Scholar 

  24. Hainzl C., Lewin M., Séré E.: Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A Math. Theor. 38(20), 4483–4499 (2005) arXiv:physics/0404047

    Article  ADS  MATH  Google Scholar 

  25. Hainzl C., Lewin M., Séré E., Solovej J.P.: A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics. Phys. Rev. A 76, 052104 (2007) arXiv:0706.1486 [physics.atom-ph]

    Article  ADS  Google Scholar 

  26. Heisenberg W.: Bemerkungen zur Diracschen Theorie des Positrons. Z. Phys. 90, 209–231 (1934)

    Article  ADS  MATH  Google Scholar 

  27. Klaus M.: Nonregularity of the Coulomb potential in quantum electrodynamics. Helv. Phys. Acta 53(1), 36–39 (1980)

    MathSciNet  Google Scholar 

  28. Klaus M., Scharf G.: The regular external field problem in quantum electrodynamics. Helv Phys. Acta 50(6), 779–802 (1977)

    MathSciNet  Google Scholar 

  29. Klaus M., Scharf G.: Vacuum polarization in Fock space. Helv. Phys. Acta 50(6), 803–814 (1977)

    MathSciNet  Google Scholar 

  30. Nenciu G., Scharf G.: On regular external fields in quantum electrodynamics. Helv. Phys. Acta 51(3), 412–424 (1978)

    MathSciNet  Google Scholar 

  31. Peskin M.E., Schroeder D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)

    Google Scholar 

  32. Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179(3), 529–553 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Scharf G.: Finite Quantum Electrodynamics. Texts and Monographs in Physics. Springer, Berlin (1989)

    Google Scholar 

  34. Schwinger J.: Quantum electrodynamics. I. A covariant formulation. Phys. Rev. 74, 1439–1461 (1948)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Serber R.: Linear modifications of the Maxwell field equations. Phys. Rev. 48, 49–54 (1935)

    Article  ADS  MATH  Google Scholar 

  36. Uehling E.A.: Polarization effects in the positron theory. Phys. Rev. 48, 55–63 (1935)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Finster.

Additional information

Supported in part by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finster, F. A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles. Lett Math Phys 97, 165–183 (2011). https://doi.org/10.1007/s11005-011-0473-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0473-1

Mathematics Subject Classification (2010)

Keywords

Navigation