Skip to main content
Log in

A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We revisit and prove some convexity inequalities for trace functions conjectured in this paper’s antecedent. The main functional considered is

$$ \Phi_{p,q} (A_1,\, A_2, \ldots, A_m) = \left({\rm Tr}\left[\left( \, {\sum\limits_{j=1}^m A_j^p } \, \right) ^{q/p} \right] \right)^{1/q} $$

for m positive definite operators A j . In our earlier paper, we only considered the case q = 1 and proved the concavity of Φ p,1 for 0 < p ≤ 1 and the convexity for p = 2. We conjectured the convexity of Φ p,1 for 1 < p < 2. Here we not only settle the unresolved case of joint convexity for 1 ≤ p ≤ 2, we are also able to include the parameter q ≥ 1 and still retain the convexity. Among other things this leads to a definition of an L q(L p) norm for operators when 1 ≤ p ≤ 2 and a Minkowski inequality for operators on a tensor product of three Hilbert spaces – which leads to another proof of strong subadditivity of entropy. We also prove convexity/concavity properties of some other, related functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando T. (1979). Convexity of certain maps on positive definite matrices and applications to Hadamard products. Lin. Alg. Appl. 26: 203–241

    Article  MATH  MathSciNet  Google Scholar 

  2. Ando T. and Hiai F. (1998). Hölder type inequalities for matrices. Math. Inequ. Appl. 1(1): 130

    MathSciNet  Google Scholar 

  3. Araki H. (1976). Relative entropy for states of von Neumann algebras. Publ. RIMS Kyoto Univ. 11: 809–833

    Article  MathSciNet  Google Scholar 

  4. Bekjan T. (2004). On joint convexity of trace functions. Lin. Alg. Appl. 390: 321–327

    Article  MATH  MathSciNet  Google Scholar 

  5. Carlen, E.A., Lieb, E.H.: A Minkowski type trace inequality and strong subadditivity of quantum entropy. Advances in the Mathematical Sciences, AMS Transl. vol. 189 Series 2, (1999) 59-68. arXiv:math/0701352

  6. Devetak I., Junge M., King C. and Ruskai M.B. (2006). Multiplicativity of completely bounded p-norms implies a new additivity result. Commun. Math. Phys. 266: 37–63

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Epstein H. (1973). Remarks on two theorems of E. Lieb. Commun. Math. Phys. 31: 317–325

    Article  MATH  ADS  Google Scholar 

  8. Hansen F. (2007). The Wigner–Yanase entropy is not subadditive. J. Stat. Phys. 126(3): 643–648

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Hayden P., Jozsa R., Petz D. and Winter A. (2004). Structure of states which satisfy strong subadditivity of quantum entropy with equality. Commun. Math. Phys. 246: 359–374

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Hiai F. (2001). Concavity of certain matrix trace functions. Taiwan. J. Math. 5(3): 535–554

    MATH  MathSciNet  Google Scholar 

  11. Kosaki H. (1982). Interpolation theory and the Wigner–Yanase–Dyson Lieb concavity. Commun. Math. Phys. 87: 315–329

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Kosaki H. (1984). Applications of the complex interpolation method to a von Neumann algebra: noncommutative L p-spaces. J. Funct. Anal. 56(1): 29–78

    Article  MATH  MathSciNet  Google Scholar 

  13. Lieb E.H. (1973). Convex trace functions and the Wigner–Yanase–Dyson Conjecture. Adv. Math. 11: 267–288

    Article  MATH  MathSciNet  Google Scholar 

  14. Lieb E.H. (1975). Some convexity and subadditivity properties of entropy. Bull. Am. Math. Soc. 81: 1–13

    MATH  MathSciNet  Google Scholar 

  15. Lieb E.H. and Ruskai M.B. (1973). Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14: 1938–1941

    Article  ADS  MathSciNet  Google Scholar 

  16. Lieb E.H. and Ruskai M.B. (1974). Some operator inequalities of the Schwarz type. Adv. Math. 12: 269–273

    Article  MATH  MathSciNet  Google Scholar 

  17. Lieb E.H. and Seiringer R. (2005). Stronger subadditivity of entropy. Phys. Rev. A 71: 062329

    Article  ADS  MathSciNet  Google Scholar 

  18. Pisier, G.: Non-commutative vector valued L p-spaces and completely p-summing maps Astérisque, vol. 247. Mathematical Society of France, Paris (1998)

  19. Pisier G. (2003). Introduction to operator space theory, vol. 294. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge

    Google Scholar 

  20. Rockafellar T. (1974). Conjugate duality and optimization, vol. 16. Regional conference series in applied mathematics. SIAM, Philadelphia

    Google Scholar 

  21. Ruskai, M.B.: Inequalities for quantum entropy: a review with conditions for equality. J. Math. Phys. 43, 4358–4375 (2002). Erratum ibid 46, 019901 (2005)

    Google Scholar 

  22. Seiringer R. (2006). The thermodynamic pressure of a dilute fermi gas. Commun. Math. Phys. 261: 729–758

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Seiringer R. (2007). On the failure of subadditivity of the Wigner–Yanase entropy. Lett. Math. Phys. 80: 285–288

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Uhlmann A. (1971). Sätze über Dichtematrizen. Wiss. Z. Karl-Marx Univ. Leipzig 20: 633–653

    MathSciNet  Google Scholar 

  25. Uhlmann A. (1977). Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54: 21–32

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Wigner E.P. and Yanase M.M. (1963). Information contents of distributions. Proc. Nat. Acad. Sci 49: 910–918

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Wigner E.P. and Yanase M.M. (1964). On the positive semidefinite nature of certain matrix expressions. Can. J. Math. 16: 397–406

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Carlen.

Additional information

Eric A. Carlen’s work was partially supported by U.S. National Science Foundation grant DMS 06-00037.

Elliott H. Lieb’s work was partially supported by U.S. National Science Foundation grant PHY 06-52854.

© 2008 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlen, E.A., Lieb, E.H. A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity. Lett Math Phys 83, 107–126 (2008). https://doi.org/10.1007/s11005-008-0223-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0223-1

Mathematics Subject Classification (2000)

Keywords