Skip to main content
Log in

Thomae Type Formulae For Singular Z N Curves

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give an elementary and rigorous proof of the Thomae type formula for the singular curves \(\mu^N=\prod_{j=1}^m(\lambda-\lambda_{2j})^{N-1}\prod_{j=0}^{m}(\lambda-\lambda_{2j+1})\). To derive the Thomae formula we use the traditional variational method which goes back to Riemann, Thomae and Fuchs. An important step of the proof is the use of the Szegö kernel computed explicitly in algebraic form for non-singular 1/N-periods. The proof inherits principal points of Nakayashiki’s proof (Nakayashiki in Publ. Res. Inst. Math. Sci 33(6) 987–1015, 1997) obtained for non-singular Z N curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker H.F. (1907) Multiply periodic functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Baker H.F. (1897) Abel’s theorem and the allied theory of theta functions. Cambridge University Press, Cambridge reprinted 1995

    MATH  Google Scholar 

  3. Buchstaber V.M., Enolskii V.Z., Leykin D.V. (1997). Kleinian functions, hyperelliptic Jacobians and applications. In: Novikov S.P., Krichever I.M. (eds). Reviews in mathematics and mathematical physics (London), vol. 10:2. Gordon and Breach, pp. 1–125

    Google Scholar 

  4. Bolza O. (1899) The partial differential equations for the hyperelliptic θ and σ–functions. Am. J. Math. 21, 107–125

    Article  MathSciNet  Google Scholar 

  5. Bershadsky M., Radul A. (1987) Conformal field theories with additional Z N symmetry. Int. J. Mod. Phys. A2-1, 165–178

    MathSciNet  Google Scholar 

  6. Bershadsky M., Radul A. (1988) Fermionic fields on Z N curves. Commun. Math. Phys. 116(4): 689–700

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Braden, H., Enolski, V.: Remarks on the complex geometry of the 3-monopole, Preprint (2006), arXiv: math-ph/0601040

  8. Burkhardt H. (1893) Ueber die Darstellung einiger Falle der automorphen Primformen durch specielle Thetareihen. Math. Ann. 42, 185–214

    Article  MathSciNet  Google Scholar 

  9. Diez G.G. (1991) Loci of curves which are prime Galois coverings of \(\mathbb{P}\) 1. Proc. London Math. Soc. 62(3): 469–489

    Article  MATH  MathSciNet  Google Scholar 

  10. Deift P.A., Its A.R., Kapaev A., Zhou X. (1999) On the algebro-geometric integration of the Schlesinger equations. Commun. Math. Phys. 203(3): 613–633

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Dullin H.R., Richter P.H., Veselov A.P., Waalkens H. (2001) Actions of the Neumann systems via Picard–Fuchs equations. Physica D 155, 159–183

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Dubrovin B.A. (1981) Theta functions and nonlinear equations. Russ. Math. Surv. 36, 11–80 [Russian]

    Article  MathSciNet  Google Scholar 

  13. Enolski V.Z., Grava T. (2004) Singular Z N -curves and the Riemann–Hilbert problem. Int. Math. Res. Notices 32, 1619–1683 math-ph/0306050

    Article  MathSciNet  Google Scholar 

  14. Enolski V.Z., Richter P.H. Periods of hyperelliptic integrals expressed in terms of θ-constants by means of Thomae formulae. Phil. Trans. London Math. Soc. (2006 in press)

  15. Farkas, H. Generalizations of the λ function. In: Proceedings of the Hirzebruch 65 conference on algebraic geometry (Ramat. Gan, 1993), Israel Math. Conf. Proc. (Ramat Gan), vol. 9. Bar-Ilan University, pp. 231–239, (1996)

  16. Fay J.D. (1973) Theta functions on Riemann surfaces. Lectures Notes in Mathematics (Berlin), vol. 352, Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  17. Fay J.D. (1992) Kernel functions, analytical torsion and moduli spaces. vol. 96. Memoirs of the American Mathematical Society, Providence, Rhode Island

    Google Scholar 

  18. Farkas H.M., Kra I. (1980) Riemann surfaces. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  19. Fuchs L. (1871) Ueber die Form der Argumente der Thetafunctionen und über die Bestimmung von θ(0,...,0) als Function der Klassenmoduln. J. reine angew. Math. 73, 305–323 [German]

    Google Scholar 

  20. Hawley N.S., Schiffer M. (1966) Half-order differentials on Riemann surfaces. Acta Mathematica 115, 199–236

    Article  MATH  MathSciNet  Google Scholar 

  21. Hutchinson J.I. (1902) On a class of automorphic functions. Trans. Amer. Math. Soc. 3, 1–11

    Article  MathSciNet  Google Scholar 

  22. Its A.R., Matveev V.B. (1975) Hill’s operators with a finite number of lacunae and multisoliton solutions of the Korteweg-de Vries equation. Theor. Math. Fiz. 23, 51–67 [Russian]

    MathSciNet  Google Scholar 

  23. Kitaev A., Korotkin D. (1998) On solutions of Schlesinger equations in terms of theta-functions. Int. Math. Res. Notices. 17, 877–905

    Article  MathSciNet  Google Scholar 

  24. Kokotov A., Korotkin D. (2004) Tau-functions on Hurwitz spaces. Math. Phys. Anal. Geom. 7(1): 47–96 arXiv:math-ph/0202034, 2003

    Article  MATH  MathSciNet  Google Scholar 

  25. Klein F. (1886) Über hyperelliptische Sigmafunctionen. Math. Ann. 27, 431–464 [German]

    Article  MathSciNet  Google Scholar 

  26. Klein F. (1888) Über hyperelliptische Sigmafunctionen. Math. Ann. 32, 351–380 [German]

    Article  MathSciNet  Google Scholar 

  27. Knizhnik V.G. (1989) Multiloop amplitudes in the theory of quantum strings and complex geometry. Sov. Phys. Usp. 32(11): 945–971

    Article  MathSciNet  Google Scholar 

  28. Koike K. (2003) On the family of pentagonal curves of genus 6 and associated modular forms on the ball. J. Math. Soc. Japan 55(1): 165–195

    Article  MATH  MathSciNet  Google Scholar 

  29. Korotkin D. (2004) Solution of matrix Riemann–Hilbert problems with quasi-permutation monodromy matrices. Math. Ann. 329(2): 335–364

    Article  MATH  MathSciNet  Google Scholar 

  30. Mestre J.F. (1991) Moyenne de Borchardt et integrales elliptiques. C. R. Acad. Sci. Paris Sér I Math. 313(5): 273–276 [French]

    MATH  MathSciNet  Google Scholar 

  31. Miranda R. (1995) Algebraic curves and Riemann surfaces. Graduate Studies in Mathematics, vol. 5. American Mathematical Society, Providence

    MATH  Google Scholar 

  32. Mumford D. (1983, 1984) Tata lectures on theta. vols. 1 and 2. Birkhäuser, Boston

    Google Scholar 

  33. Nakayashiki A. (1997) On the Thomae formula for Z N curves. Publ. Res. Inst. Math. Sci. 33(6): 987–1015

    Article  MATH  MathSciNet  Google Scholar 

  34. Narasimhan M.S. Lectures on theta-functions. Lecture delivered at the University of Kaiserslautem Kaiserslautem (1987)

  35. Rauch H.E. (1959) Weierstrass points, branch points and moduli of Riemann surfaces. Comm. Pure Appl. Math. 12(3):543–560

    Article  MathSciNet  Google Scholar 

  36. Shiga H. On the representation of the Picard modular function by θ constants I-II. Publ. RIMS, Kyoto University, 24, 311–360 (1988)

  37. Smirnov F.A. (1993) Form factors, deformed Knizhnik-Zamolodchikov equations and finite-gap integration. Commun. Math. Phys. 155, 459–487

    Article  MATH  ADS  Google Scholar 

  38. Thomae J. (1870) Beitrag zur Bestimmung von \(\vartheta\) (0,0,...,0) durch die Klassenmoduln algebraischer Functionen. J. Reine Angew. Math. 71, 201–222 [German]

    Google Scholar 

  39. Tjurin A.N. (1978) Periods of quadratic differentials. Uspekhi Matem. Nauk 33(6): 149–195 [Russian]

    MathSciNet  Google Scholar 

  40. Wirtinger W.W. (1943) Integral dritter Gattung und linear polymorphe Funktionen. Monatsh. Math. Phys. 51, 101–114 [German]

    MathSciNet  Google Scholar 

  41. Zverovich E.I. (1971) Boundary problems of the theory of analytic functions. Uspekhi. Mat. Nauk 31(5): 113–181[Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Z. Enolski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enolski, V.Z., Grava, T. Thomae Type Formulae For Singular Z N Curves. Lett Math Phys 76, 187–214 (2006). https://doi.org/10.1007/s11005-006-0073-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-006-0073-7

Mathematics Subject Classifications (2000)

Keywords

Navigation